• Title/Summary/Keyword: actuation system

Search Result 336, Processing Time 0.238 seconds

EFFECTS OF VARIOUS VVA SYSTEMS ON THE ENGINE FUEL ECONOMY AND OPTIMIZATION OF A CVVT-VVL SI ENGINE USING 1D SIMULATION

  • Lee, H.B.;Kwon, H.;Min, K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.675-685
    • /
    • 2007
  • A single cylinder SI engine with a VVA system is modeled by the coupling of a commercial 1D simulation package and an additional combustion model and validated by comparison with experimental data. A number of simulations are carried out to investigate the effects of five different VVA systems on the performance and fuel efficiency of the baseline engine. Finally, the simulation model is applied to an extensive computational study to map out the strategies to operate the engines with dual CVVT and dual CVVT-2 step VVL systems in a fuel-efficient manner.

Satellite Attitude Control with a Modified Iterative Learning Law for the Decrease in the Effectiveness of the Actuator

  • Lee, Ho-Jin;Kim, You-Dan;Kim, Hee-Seob
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.87-97
    • /
    • 2010
  • A fault tolerant satellite attitude control scheme with a modified iterative learning law is proposed for dealing with actuator faults. The actuator fault is modeled to reflect the degradation of actuation effectiveness, and the solar array-induced disturbance is considered as an external disturbance. To estimate the magnitudes of the actuator fault and the external disturbance, a modified iterative learning law using only the information associated with the state error is applied. Stability analysis is performed to obtain the gain matrices of the modified iterative learning law using the Lyapunov theorem. The proposed fault tolerant control scheme is applied to the rest-to-rest maneuver of a large satellite system, and numerical simulations are performed to verify the performance of the proposed scheme.

Rotational position control of RCGLUD using input shaping algorithm (입력 다듬기를 이용한 사용후 핵연료 수송용기 취급장치의 회전 위치제어)

  • 김동기;박영수;윤지섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1060-1063
    • /
    • 1996
  • Remote Cask Grappling and Lid Unbolting Device (RCGLUD) is developed as a dedicated device capable of performing complete procedure of handling nuclear spent fuel transport cask. Since RCGLUD is suspended to an overhead crane, its body should undergo prolonged vibration upon actuation in rotational direction and it becomes difficult to achieve precise grappling of the cask. Therefore, this paper presents an adaptation of input shaping technique to effectively suppress the rotational vibration of RCGLUD and achieve precise positioning in rotational direction. This technique has a practical merit in that it requires only the information on the system natural frequency and the damping ratio. Its performance is verified by both simulation and experimental studies, and revealed that the method is also insensitive to modeling error.

  • PDF

KSR-III 김발엔진 구동 시스템의 전자파 환경시험

  • Lee, Hee-Joong;Park, Moon-Su;Min, Byeong-Joo
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.153-163
    • /
    • 2003
  • Electronic equipments and make other electronic systems to operate abnormally by means of electromagnetic interference, or can operate abnormally themselves by electromagnetic interference of other electronic systems. Therefore, electronic equipments are required to reduce their electromagnetic interference as small as for other systems to operate properly and operate properly within electromagnetic interference from other electronic systems. In order to prove that electronic equipments meet such requirements, they should undergo electromagnetic environmental test. In this study, we introduce electromagnetic environmental requirements, test procedures and test results of gimbal engine actuation system of KSR-III.

  • PDF

Resonance Frequency and Quality Factor Tuning in Electrostatic Actuation of Nanoelectromechanical Systems

  • Kim, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1711-1719
    • /
    • 2005
  • In an electro statically actuated nanoelectromechanical system (NEMS) resonator, it is shown that both the resonance frequency and the resonance quality (Q) factor can be manipulated. How much the frequency and quality factor can be tuned by excitation voltage and resistance on a doubly-clamped beam resonator is addressed. A mathematical model for investigating the tuning effects is presented. All results are shown based on the feasible dimension of the nanoresonator and appropriate external driving voltage, yielding up to 20 MHz resonance frequency. Such parameter tuning could prove to be a very convenient scheme to actively control the response of NEMS for a variety of applications.

Adaptive Vibration Control of Smart Composite Structures Using Neuro-Controller (신경망 제어기를 이용한 지능 복합재 구조물의 적응 진동 제어)

  • Youn, Se-Hyun;Han, Jae-Hong;Lee, In
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.832-840
    • /
    • 1998
  • Experimental studies on the adaptive vibration control of composite beams have been performed using a piezoelectric actuator and the neuro-controller. The variations in natural frequencies of the specimen and the actuation characteristics of the piezoelectric actuator according to the delamination in the bonding layer have been studied. In addition, the simulation of adaptive vibration control has been performed for the composite specimens with delaminated piezoelectric actuator using neuro-controller. The hardware for the adaptive vibration control experiment was prepared. A DSP(digital signal processor) has been used as a digital controller. Using neuro-controller, the adaptive vibration control experiment has been performed. The vibration control results using the neuro-controller show that the present neuro-controller has good performance and robustness with the system parameter variations.

  • PDF

A Study on the Mixed Mode of Gyros by FPGA Implementation (FPGA 구현을 통한 자이로의 혼합모드 연구)

  • Lho, Young-Hwan;Bang, Hyo-Chung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.54-59
    • /
    • 2002
  • In the three-axis control of satellites by using on-board actuators, gyros are usually used to measure the attitude angles and angular rates. The gyros are operated by electronic parts and mechanical actuators. The digital components of the electronic parts consist of largely FPGA (Field Programmable Gate Array) as one of the methods for VLSI(Very Large Scale Integrated) circuit design, while the mechanical parts provide output signal directly by mechanical actuation of a spinning rotor. In this research, a mixed mode of gyro is implemented in FGA. In addition to the hardware implementation, the simulation study was conducted by using the SABER for the mixed mode simulator. Results for the practical implementation of the satellite ACS (Attitude Control System) interfaced with the data processing are also presented to validate the FPGA implementation.

Design of gas-gap thermal switch for reducing cooldown time of 2-stage cryocooler (2단 냉동기의 냉각시간 단축을 위한 기체-간극 열스위치 설계)

  • 김형진;장호명
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.35-38
    • /
    • 2000
  • A preliminary design of gas-gp thermal switch is presented to reduce the cooldown time of superconducting system conduction-cooled by a two-stage refrigerator without liquid cryogens. The switch connects thermally the first and the second stages (ON) to take advantage of the larger refrigeration capacity at the first stage during the beginning period. After the cryogenic temperature is reached, the switch should isolate thermally the two stages (OFF) in order to reduce the heat leak to the cold end. In this paper, a new concept for the performance index is introduced to evaluate the reduction of the cooldown time and the increase of the cooling load at the same time. In addition, the design of a gas-gap switch is discussed as a closed container of several staggered concentric tubes filled with gas, which is frozen at low temperatures for the shut-off of heat without any mechanical actuation. Some of the detailed features in the design is quantitative investigated by the gas convection model in the continuum or the rarefied gas region.

  • PDF

A position control of an electro-mechanical actuation system using Time Delay Controller(TDC) (시간지연 제어기를 이용한 전기식 구동장치의 위치제어)

  • Lee, Young-Cheol;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2055-2057
    • /
    • 2002
  • 본 논문에서는 외란 및 파라미터 변동에 강건한 시간지연 제어 알고리즘을 전기식 구동장치의 위치 제어기에 적용하여 설계한 내용을 기술하였다. 시간지연 제어기는 일정하게 경과된 시간에서의 외란 및 동특성 변동의 양을 현재의 것으로 가정하여 전체 제어 시스템의 특성이 기준모델의 특성을 따르게 하는 제어기이다. 파라미터 변동 및 외란에 대해 시간지연 제어기의 강건성을 시뮬레이션을 통해 입증하였으며 PID 제어기와도 비교하였다. 또한 포화요소에 대한 와인드업 방지보상기와 모델링되지 않는 동특성에 대한 대향필터링 보상기를 설계하여 시스템의 안정성을 향상시켰다.

  • PDF

A Study on the Dynamic Analysis of a Reciprocating Linear Actuator for Gas Compression Considering Pressure Using Finite Element Method (압력을 고려한 압축기용 선형 엑츄에이터의 동특성 유한요소해석에 관한 연구)

  • Kim, Ki-Chan;Jung, In-Soung;Yoon, Sang-Baeck;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.168-170
    • /
    • 1997
  • This paper presents the dynamic analysis of a reciprocating actuation system based on moving magnet actuator for gas compression. For the analysis of the linear actuator, an axisymmetric finite element method (FEM) considering the saturation effect of the magnetic material is used, and electrical circuit equation, mechanical dynamic equation and pressure dynamics are coupled. In the FE analysis, we adopt a moving line technique. The pressure dynamics of the gas in the compressor is modeled by using the law of thermodynamics. The analysis results are compared fairly well with experimental ones.

  • PDF