• Title/Summary/Keyword: active-sensing

Search Result 400, Processing Time 0.031 seconds

An Algorithm to Reduce the Number of Nodes in Active Spectrum Sensing Via Cooperative Sequential Detection

  • Truc, Tran Thanh;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.148-154
    • /
    • 2012
  • In this paper, we propose an algorithm to conserve resources of the common control channel in a cognitive radio network by rejecting the redundant users using cooperative spectrum sensing. The proposed scheme is investigated under the paradigm of active spectrum sensing and a sequential detection technique. The algorithm is based on the J-divergence between the hypotheses of non primary user operation and the otherwise case. We select the most significant eigenvalues, which primarily affect the global statistical test. For the case where interference is from a secondary system transmission, a match filter is first employed to remove the degradation, and then the proposed algorithm is employed to remove the cooperative sensing nodes. Numerical results are provided and compared with conventional cases in order to validate the performance of the proposed algorithm.

Computational performance and accuracy of compressive sensing algorithms for range-Doppler estimation (거리-도플러 추정을 위한 압축 센싱 알고리즘의 계산 성능과 정확도)

  • Lee, Hyunkyu;Lee, Keunhwa;Hong, Wooyoung;Lim, Jun-Seok;Cheong, Myoung-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.534-542
    • /
    • 2019
  • In active SONAR, several different methods are used to detect range-Doppler information of the target. Compressive sensing based method is more accurate than conventional methods and shows superior performance. There are several compressive sensing algorithms for range-Doppler estimation of active sonar. The ability of each algorithm depends on algorithm type, mutual coherence of sensing matrix, and signal to noise ratio. In this paper, we compared and analyzed computational performance and accuracy of various compressive sensing algorithms for range-Doppler estimation of active sonar. The performance of OMP (Orthogonal Matching Pursuit), CoSaMP (Compressive Sampling Matching Pursuit), BPDN (CVX) (Basis Pursuit Denoising), LARS (Least Angle Regression) algorithms is respectively estimated for varying SNR (Signal to Noise Ratio), and mutual coherence. The optimal compressive sensing algorithm is presented according to the situation.

Closed-loop structural control with real-time smart sensors

  • Linderman, Lauren E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1147-1167
    • /
    • 2015
  • Wireless smart sensors, which have become popular for monitoring applications, are an attractive option for implementing structural control systems, due to their onboard sensing, processing, and communication capabilities. However, wireless smart sensors pose inherent challenges for control, including delays from communication, acquisition hardware, and processing time. Previous research in wireless control, which focused on semi-active systems, has found that sampling rate along with time delays can significantly impact control performance. However, because semi-active systems are guaranteed stable, these issues are typically neglected in the control design. This work achieves active control with smart sensors in an experimental setting. Because active systems are not inherently stable, all the elements of the control loop must be addressed, including data acquisition hardware, processing performance, and control design at slow sampling rates. The sensing hardware is shown to have a significant impact on the control design and performance. Ultimately, the smart sensor active control system achieves comparable performance to the traditional tethered system.

Development of Ultrasonic Active Fiber Sensor for Structural Health Monitoring (구조물 안전진단을 위한 초음파능동형광섬유 센서의 개발)

  • Lim, Seung-Hyun;Lee, Jung-Ryul;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.747-752
    • /
    • 2008
  • Fiber-guided sensor system using a generator and a receiver can detect the amplitude of load or pressure. However, this type of sensor can show some difficulties in detecting the location of damages and pressure loadings. To overcome this weakness of this type, the ultrasonic active fiber sensor, which has an integrated ultrasonic generator and sensing part, was developed in this study. By using this sensor system, the location of mechanical loads can be exactly detected. Moreover, the ultrasonic active fiber sensor is more cost-effective than an ultrasonic fiber sensor using two piezoelectric transducers which are used as a generator and a receiver, respectively. Two applications of the ultrasonic active fiber sensor are demonstrated: cure monitoring of lead and measurement of liquid level. Present results showed that the active fiber sensor can be applied for various environmental sensing.

  • PDF

Method of Spectrum Sensing and Energy Harvesting in Cognitive Communication Network (인지 통신 네트워크의 스펙트럼 감지 및 전력 수집 방안)

  • Kim, Tae-Wook;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • In this paper, we proposed not specturm sensing but also save energy without consume energy of secondary network that spectrum sensing of cognitive applied energy harvesting scheme. Algorithms of sensing and harvesting is determine active or idle of primary network, compares the amount of energy that is harvested by energy harvesting scheme with the threshold. If secondary network to send a message and primary network is active, by changing frequency to use the spectrum. Further, if secondary network have no message, continues energy harvest. Therefore, spectrum sensing applied energy harvesting scheme, energy of secondary network is remove waste and charge energy, efficiency and utilization of cognitive network can be increase.

Spectrum Sensing Method of Cognitive Network applying Energy Harvesting (에너지 하베스팅이 적용된 스펙트럼 감지 방안)

  • Kim, Tae-Wook;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.73-76
    • /
    • 2015
  • In this paper, we propose energy harvesting apply to spectrum sensing. In this case, we can be spectrum sensing without consume energy. Algorithms of sensing and harvesting are determine active or idle of primary network, Compares with the threshold energy and the amount of energy that is harvested by energy harvesting scheme. If the secondary network want to send a message while the primary network is active, secondary users will change frequency to use the spectrum. Further, if the secondary network has not message, it will continues harvest energy. Therefore, spectrum sensing applied the energy harvesting method, energy of secondary network is remove waste and charge energy. So, efficiency and utilization of cognitive network can be increase.

AN IMAGE SEGMENTATION LEVEL SET METHOD FOR BUILDING DETECTION

  • Konstantinos, Karantzalos;Demetre, Argialas
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.610-614
    • /
    • 2006
  • In this paper the advanced method of geodesic active contours was developed for the task of building detection from aerial and satellite images. Automatic extraction of man-made structures including buildings, building blocks or roads from remote sensing data is useful for land use mapping, scene understanding, robotic navigation, image retrieval, surveillance, emergency management procedures, cadastral etc. A level set method based on a region-driven segmentation model was implemented with which building boundaries were detected, through this curve propagation technique. The essence of this approach is to optimize the position and the geometric form of the curve by measuring information along that curve, and within the regions that compose the image partition. To this end, one can consider uniform intensities inside objects and the background. Thus, given an initial position of the curve, one can determine global, region-driven functions and provide a statistical description of the inside and outside object area. The calculus of variations and a gradient descent method was used to optimize the variational functional by an iterative steady state process. Experimental results demonstrate the potential of the proposed processing scheme.

  • PDF

Impact of Sensing Models on Probabilistic Blanket Coverage in Wireless Sensor Network (무선 센서 네트워크에서 Probabilistic Blanket Coverage에 대한 센싱 모델의 영향)

  • Pudasaini, Subodh;Kang, Moon-Soo;Shin, Seok-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.697-705
    • /
    • 2010
  • In Wireless Sensor Networks (WSNs), blanket (area) coverage analysis is generally carried to find the minimum number of active sensor nodes required to cover a monitoring interest area with the desired fractional coverage-threshold. Normally, the coverage analysis is performed using the stochastic geometry as a tool. The major component of such coverage analysis is the assumed sensing model. Hence, the accuracy of such analysis depends on the underlying assumption of the sensing model: how well the assumed sensing model characterizes the real sensing phenomenon. In this paper, we review the coverage analysis for different deterministic and probabilistic sensing models like Boolean and Shadow-fading model; and extend the analysis for Exponential and hybrid Boolean-Exponential model. From the analytical performance comparison, we demonstrate the redundancy (in terms of number of sensors) that could be resulted due to the coverage analysis based on the detection capability mal-characterizing sensing models.

COMBINED ACTIVE AND PASSIVE REMOTE SENSING OF HURRICANE OCEAN WINDS

  • Yueh, Simon H.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.142-145
    • /
    • 2006
  • The synergism of active and passive microwave techniques for hurricane ocean wind remote sensing is explored. We performed the analysis of Windsat data for Atlantic hurricanes in 2003-2005. The polarimetric third Stokes parameter observations from the Windsat 10, 18 and 37 GHz channels were collocated with the ocean surface winds from the Holland wind model, the NOAA HWind wind vectors and the Global Data Assimilation System (GDAS) operated by the National Center for Environmental Prediction (NCEP). The collocated data were binned as a function of wind speed and wind direction, and were expanded by sinusoidal series of the relative azimuth angles between wind and observation directions. The coefficients of the sinusoidal series, corrected for atmospheric attenuation, have been used to develop an empirical geophysical model function (GMF). The Windsat GMF for extreme high wind compares very well with the aircraft radiometer and radar measurements.

  • PDF

Robust Positioning-Sensing for a Mobile Robot (모바일 로봇의 강인한 위치 추정 기법)

  • Lee, Jang-Myung;Hwang, Jin-Ah;Hur, Hwa-Ra;Kang, Jin-Gu
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.221-226
    • /
    • 2007
  • A robust position-sensing system is proposed in this paper for ubiquitous mobile robots which move indoor as well as outdoor. The Differential GPS (DGPS) which has position estimation error of less than 5 m is a general solution when the mobile robots are moving outdoor, while an active beacon system (ABS) with embedded ultrasonic sensors is selected as an indoor positioning system. The switching from the outdoor to indoor or vice versa causes unstable measurements on account of the reference and algorithm changes. To minimize the switching time in the position estimation and to stabilize the measurement, a robust position-sensing system is proposed. In the system, to minimize the switching delay, the door positions are stored and updated in a database. The reliability and accuracy of the robust positioning system based on DGPS and ABS are verified through the real experiments using a mobile robot prepared for this research and demonstrated.

  • PDF