Transactions of the Korean Society for Noise and Vibration Engineering
/
v.14
no.4
/
pp.267-275
/
2004
This research is concerned with the development of a real-time adaptive PPF controller for the active vibration suppression of smart structure. In general, the tuning of the PPF controller is carried out off-line. In this research, the real-time learning algorithm is developed to find the optimal filter frequency of the PPF controller in real time and the efficacy of the algorithm is proved by implementing it in real time. To this end, the adaptive algorithm is developed by applying the gradient descent method to the predefined performance index, which is similar to the method used popularly in the optimization and neural network controller design. The experiment was carried out to verify the validity of the adaptive PPF controller developed in this research. The experimental results showed that adaptive PPF controller is effective for active vibration control of the structure which is excited by either impact or harmonic disturbance. The filter frequency of the PPF controller is tuned in a very short period of time thus proving the efficiency of the adaptive PPF controller.
Along with the transformation of the knowledge-based environment, e-learning has become a main teaching and learning method, prompting various research efforts to be conducted in this field. One major research area in e-learning involves adaptive learning systems that provide personalized learning content according to each learner's characteristics by taking into consideration a variety of learning circumstances. Active research on ontology-based adaptive learning systems has recently been conducted to provide more efficient and adaptive learning content. In this paper, we design and propose an adaptive learning system based on the concept lattice of Formal Concept Analysis (FCA) with the same objectives as those of ontology approaches. However, we are in pursuit of a system that is suitable for learning of specific domains and one that allows users to more freely and easily build their own adaptive learning systems. The proposed system automatically classifies the learning objects and concepts of an evolved domain in the structure of a concept lattice based on the relationships between the objects and concepts. In addition, the system adaptively constructs and presents the learning structure of the concept lattice according to each student's level of knowledge, learning style, learning preference and the learning state of each concept.
KSCE Journal of Civil and Environmental Engineering Research
/
v.39
no.5
/
pp.631-636
/
2019
Over the last decade, many researchers have investigated a number of vision-based construction object detection algorithms for the purpose of construction site monitoring. However, previous methods require the ground truth labeling, which is a process of manually marking types and locations of target objects from training image data, and thus a large amount of time and effort is being wasted. To address this drawback, this paper proposes a vision-based construction object detection framework that employs an active learning technique while reducing manual labeling efforts. For the validation, the research team performed experiments using an open construction benchmark dataset. The results showed that the method was able to successfully detect construction objects that have various visual characteristics, and also indicated that it is possible to develop the high performance of an object detection model using smaller amount of training data and less iterative training steps compared to the previous approaches. The findings of this study can be used to reduce the manual labeling processes and minimize the time and costs required to build a training database.
Journal of the Korea Society of Computer and Information
/
v.11
no.2
s.40
/
pp.153-158
/
2006
The effect of solving questions and learning via internet is getting more and more important these days. In this paper we propose an active learning method that makes a database for the information about certificates and practical examinations and accesses it easily. First of all, this method makes it possible to evaluate students individually, improves the motive of learning and gives students a sense of achievement by providing a user-specific question filtering technique using user profile information by weight. And, it elevates the acquisition rate of certificates by advising and managing for certificate-acquisition and it also draw more interest and understanding for future directions. The case using the method of this paper, the examination record of a certificate of qualification is elevated about 10 marks.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.339-342
/
2021
In this paper, we propose a new method for inactive region padding using reinforcement learning. Inactive region is an area that has no information, such as 360 or 3DOF+ vidoes. However, these inactive regions degrade the compression performance in general. To improve the compression performance, simple filtering is applied between active and inactive regions. But it does not fully consider the characteristics of the images. In the proposed method, inactive regions are padded through reinforcement learning that can consider the characteristics of images and the compression process. Experimental results show that the performance is better than the conventional padding method.
The Journal of the Convergence on Culture Technology
/
v.8
no.6
/
pp.207-213
/
2022
MBTI(Myer Briggs Type Indicator) is an effective personality type test to intuitively identify and classify people's tendencies. Accordingly, there are active attempts to apply MBTI to the learning area, but research on creating new learning types using MBTI is insufficient. Therefore, this paper examines the factors that affect learning and implements new learning types MY,STI(MY, Study Type Indicator) by applying them to a machine learning algorithm that has these characteristics. Data were collected by conducting a learning type test made with Google Forms on 144 general people, and supervised learning was used during machine learning. As a result, the accuracies of MY,STI were 0.933, 0.866, 0.844, and 0.733 for each learning method, learning motivation, presence or absence of external stimulus, and learning time criteria, respectively.
The solution of the environment problem is the common issue all over the world, for this reason the necessity of the environmental education of school has emphasized. On this a variety method for environmental education is needed, this paper planned and applied the 'ecology & environment' for high school which are based on GBS theory and presented a new model of environment education. GBS(Goal-Based Scenario) is that learners are presented with an end goal that is motivating and challenging. This goal is structured such that, in order to successfully meet it learners are required to build a predetermined core set of skills and knowledge by process mission and scenario. GBS is an active learning environment in which learners are trained in study that have a real-world context. When they are back in real-world they have increased ability to apply what was learned by reflecting on the GBS learning experience. This study was designed on GBS theory and taught a class by using internet Blog. As a result, when carefully reviewing the materials such as final presentation reflect journal, we conclude that the students' awareness of a learning environment is improved and the students seems to try to apply the learning outcome to a real life.
Passive learning attitudes and lack of enthusiasm in a retailing math course is quite common and a significant number of students do express their frustrations and struggles by seeking extra help outside the classroom. In order to promote students' active participation in class and to improve their performance and overall satisfaction with the course, a modified team-based learning (TBL) method was implemented in a retailing math course in two consecutive semesters. Implementing TBL into a retailing math course would improve students' accountability for their own learning, increase student interactions and engagement, and develop teamwork and collaboration skills. The scores on the midterm and final tests indicated that students' performance improved especially for the students who scored below 80% on each test when TBL was implemented. Students' reflection on the TBL activities done in class throughout the semester indicated that these TBL activities help them solidify the concepts taught in class better. They were able to realize their own mistakes and other group members who got the question right helped them understand. To maximize the benefit of TBL, it is suggested to implement TBL within the flipped classroom. Further research is called for to evaluate the effect of TBL on long-term knowledge retention among college students.
The Journal of Asian Finance, Economics and Business
/
v.7
no.10
/
pp.481-489
/
2020
The study examines the role of facilitating conditions and user habits in the use of technology in Online Learning Platform (OLP) in Indonesia. The adoption of online learning, persistence, and learning results in online platforms is essential for ensuring that education technology is implemented and gets as much value as possible. People who use technology and systems will embrace new technologies even more. This quantitative study is based on a survey of 254 respondents, who were active users of the technology, and considers the facilitating conditions and user habits variables. Two research hypotheses were tested using the Partial Least Square-Structural Equation Modeling method. Cronbach's Alpha, path coefficient, AVE, R-square, T-test were applied. The results showed that the factors significantly influence the Online Learning Platform technology behavioral intention. This impact is primarily associated with the availability of the resources required to use OLP technology. The availability of these resources includes supporting infrastructures such as widespread Internet access, easy access to mobile devices, and file sizes that affect access speed. The findings of this study suggest that it is necessary to introduce and increase the availability of resources for using OLP technology, and familiarize people with the technology features.
Kuldeep Gurjar;Surjeet Kumar;Arnav Bhavsar;Kotiba Hamad;Yang-Sae Moon;Dae Ho Yoon
Journal of Information Processing Systems
/
v.20
no.4
/
pp.558-573
/
2024
Considering factors such as illumination, camera quality variations, and background-specific variations, identifying a face using a smartphone-based facial image capture application is challenging. Face Image Quality Assessment refers to the process of taking a face image as input and producing some form of "quality" estimate as an output. Typically, quality assessment techniques use deep learning methods to categorize images. The models used in deep learning are shown as black boxes. This raises the question of the trustworthiness of the models. Several explainability techniques have gained importance in building this trust. Explainability techniques provide visual evidence of the active regions within an image on which the deep learning model makes a prediction. Here, we developed a technique for reliable prediction of facial images before medical analysis and security operations. A combination of gradient-weighted class activation mapping and local interpretable model-agnostic explanations were used to explain the model. This approach has been implemented in the preselection of facial images for skin feature extraction, which is important in critical medical science applications. We demonstrate that the use of combined explanations provides better visual explanations for the model, where both the saliency map and perturbation-based explainability techniques verify predictions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.