• Title/Summary/Keyword: active turbulence

Search Result 46, Processing Time 0.024 seconds

Thermal and Flow Analysis of a Driving Controller for Active Destruction Protections (능동 파괴 방호 구동제어기의 열 유동 해석)

  • Ryu, Bong-Jo;Oh, Bu-Jin;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.235-242
    • /
    • 2017
  • A driving controller for active destruction protections can be applied to machinery, aerospace and military fields. In particular, this controller can be used to track and attack enemy flying objects through the active control. It is important to ensure reliability of the driving controller since its operation should be kept with precision to the target point. The temperature of the environment where the driving controller is used is about -32 C ~ 50 C (241~323 ). Heat generated in the driving controller should be maintained below a certain threshold (85 C (358 )) to ensure reliability; therefore, the study and analysis of the heat flow characteristics in the driving controller are required. In this research, commercial software Solid-Works Flow Simulation was used for the numerical simulation assuming a low Reynolds number turbulence model and an incompressible viscous flow. The goal of this paper is to design the driving controller safely by analyzing the characteristics of the heat flow inside of the controller composed of chips or boards. Our analysis shows temperature distributions for boards and chips below a certain threshold.

Investigation on Aerodynamic Performance of a Highly-Loaded Axial Fan with Active/Passive Flow Control Using FSI Analysis (유체-구조 연성해석을 이용한 능동/수동 유동제어방식이 결합된 고하중 축류 팬의 성능특성 연구)

  • Ma, Sang-Bum;Kim, Kwang-Yong;Choi, Jaeho;Lee, Wonsuk
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.1
    • /
    • pp.113-119
    • /
    • 2017
  • An investigation on aerodynamic performance of a highly-loaded axial fan has been conducted to find the effects of tip injection and casing groove on aerodynamic performance in this study. Three-dimensional Reynolds-averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence model were used to analyze the fluid flow in the fan with Fluid-Structure Interaction (FSI) analysis. The hexahedral grid was used to construct computational domain, and the grid dependency test drew the optimal grid system. FSI analysis was also carried out to predict the deformation of rotor and stator blades, and the effect of deformation on the aerodynamic performance of axial fan was analyzed compared to the performance predicted without FSI analysis.

Underwater Glider: Its Applicability in the East/Japan Sea (해양 글라이더에 관하여: 한국 근해에서의 적용 가능성)

  • Park, Jong Jin
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.107-121
    • /
    • 2013
  • The underwater glider is an autonomous vehicle that can glide through the ocean interior by using a pair of wings attached to its body and can move up and down through the water column by changing its buoyancy. As of now, there are three widely-used gliders, namely, the Spray that was co-developed by Scripps Oceanographic Institution and Woods Hole Oceanographic Institution, the Slocum produced by the Webb Research Cooperation, and the Seaglider that was produced by the University of Washington. In this paper, I will introduce these three gliders and discuss the principles and procedures related to glider operation as well as the application and extendability of modern physical and bio-geochemical sensors to gliders. My experiences in developing a glider for measuring ocean turbulence and testing it 7 times during 12 days are shared in this paper. On the basis of my experiences and knowledge, different kinds of aspects that should be considered for successful glider operation are discussed. In addition, a suggestion is made as to what would be the ideal way to operate underwater gliders in the East/Japan Sea. At the end, the current status of active glider operation teams is presented and the efforts to proceed toward future gliders are briefly introduced.

Flicker Mitigation in a Wind Farm by Controlling a Permanent Magnet Synchronous Generator (영구자석형 동기발전기를 이용한 풍력단지의 플리커 저감)

  • Hoan, Pham Van;Kim, Dae-Hyun;Ahn, Jin-Hong;Kim, Eel-Hwan;Oh, Seong-Bo;Kim, Ho-Chan;Kim, Se-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1163-1168
    • /
    • 2009
  • The power quality of wind energy becomes more and more important in connecting wind-farms to the grid, especially weak grid. This paper presents the simulation of a wind farm of a permanent magnet synchronous generator (PMSG) and a doubly fed induction generator (DFIG). Flicker mitigation is performed by using PMSG as a static synchronous compensator (STATCOM) to regulate the voltage at the point of common coupling (PCC). A benefit of the measure is that integrating two function of to control the active power flow and to reduce the voltage flicker in a wind farm. Simulation results show that controlling PMSG is an effective and economic measure in reducing the flicker during continuous operation of grid connected wind turbines regardless of short circuit capacity ratio, turbulence intensity and grid impedance angle.

Adaptive Optics in Institute of Optics and Electronics, China

  • Jiang, Wenhan;Ling, Ning
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.3-3
    • /
    • 2000
  • Adaptive Optical (AO) technology can compensate for wave-front errors in real-time to improve image and beam quality. The research and development on AO in China began in 1979. In 1980, the first laboratory on AO in China was established in Institute of Optics and Electronics (IOE), Chinese Academy of Sciences (CAS). Since then several AO systems have been built in this Laboratory. The 19-element system is the first AO system in the world ever used in inertial confinement fusion (ICF) facility in our knowledge. It corrects the static error of this large laser engineering. The 21-element system was firstly tested at the 1.2m telescope of Kunming Observatory in 1990 and then up-dated as an IR AO system installed at the 2.16m telescope of Beijing Observatory. The 37-element system was used with a turbulence cell in Laboratory on Atmospheric Optics in Hefei to conduct elementary research on Atmospheric Optics. The 61-element system for astronomical observation is newly developed. It has been successfully installed at the 1.2m telescope of Kunming Observatory and a laser guide star system will be integrated with the system. A compact AO system using our newly developed miniature DM for high resolution ophthalmic imaging of retina is also being built. The key elements of these AO systems, deformable mirrors and fast-steering mirrors, are all developed in this Laboratory. In this talk, the main configurations of these AO systems, some test results as well as the specifications of these active mirrors will be presented.

  • PDF

Three-Dimensional Location Tracking System for Automatic Landing of an Unmanned Helicopter (무인 헬기 자동 착륙을 위한 3차원 위치 추적 시스템)

  • Choo, Young-Yeol;Kang, Seong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.608-614
    • /
    • 2008
  • This paper describes a location tracking system to guide landing process of an Unmanned Helicopter(UMH) exploiting MIT Cricket nodes. For automatic landing of a UMH, a precise positioning system is indispensable. However, GPS(Global Positioning System) is inadequate for tracking the three dimensional position of a UMH because of large positioning errors. The Cricket systems use Time-Difference-of-Arrival(TDoA) method with ultrasonic and RF(Radio Frequency) signals to measure distances. They operate in passive mode in that a listener attached to a moving device receives distance signals from several beacons located at fixed points on ground. Inevitably, this passive type of implementation causes large disturbances in measuring distances between beacons and the listener due to wind blow from propeller and turbulence of UMH body. To cope with this problem, we proposed active type of implementation for positioning a UMH. In this implementation, a beacon is set up at UMH body and four listeners are located at ground area at least where the UMH will land. A pair of Ultrasonic and RF signals from the beacon arrives at several listeners to calculate the position of the UMH. The distance signals among listeners are synchronized with a counter value appended to each distance signals from the beacon.

Geometrical Effects of an Active Casing Treatment on Aerodynamic Performance of a Centrifugal Compressor (능동형 케이싱 트리트먼트의 형상 변화가 원심압축기의 공력성능에 미치는 영향)

  • Ma, Sang-Bum;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.5-12
    • /
    • 2016
  • In this study, a parametric study on a cavity as casing treatment of a centrifugal compressor has been conducted using three-dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model. Two kinds of cavity were applied at choke and surge conditions, respectively, in this work. Inlet and outlet port widths, angle of outlet port, and length of cavity were chosen as the geometric parameters and investigated to find their effects on the aerodynamic performances such as adiabatic efficiency at design mass flow rate and stall margin of the centrifugal compressor. It was found that the aerodynamic performances of the centrifugal compressor were affected considerably by the four geometric parameters. The adiabatic efficiency was hardly changed by the geometric parameters, excepts for the angle of outlet port. With an increase in the angle of outlet port, the adiabatic efficiency and the stall margin decreased. The stall margin was more sensitive to the outlet port width than to the other geometric parameters. And, with a decrease in the outlet port width, the stall margin increased by 2% compared to that of the reference.

New estimation methodology of six complex aerodynamic admittance functions

  • Han, Y.;Chen, Z.Q.;Hua, X.G.
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.293-307
    • /
    • 2010
  • This paper describes a new method for the estimation of six complex aerodynamic admittance functions. The aerodynamic admittance functions relate buffeting forces to the incoming wind turbulent components, of which the estimation accuracy affects the prediction accuracy of the buffeting response of long-span bridges. There should be two aerodynamic admittance functions corresponding to the longitudinal and vertical turbulent components, respectively, for each gust buffeting force. Therefore, there are six aerodynamic admittance functions in all for the three buffeting forces. Sears function is a complex theoretical expression for the aerodynamic admittance function for a thin airfoil. Similarly, the aerodynamic admittance functions for a bridge deck should also be complex functions. This paper presents a separated frequency-by-frequency method for estimating the six complex aerodynamic admittance functions. A new experimental methodology using an active turbulence generator is developed to measure simultaneously all the six complex aerodynamic admittance functions. Wind tunnel tests of a thin plate model and a streamlined bridge section model are conducted in turbulent flow. The six complex aerodynamic admittance functions, determined by the developed methodology are compared with the Sears functions and Davenport's formula.

The Review of Studies on Heat Transfer in Impinging Jet

  • Hong, Sung-Kook;Cho, Hyung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.196-205
    • /
    • 2005
  • In this paper, recent research trend on heat transfer in impinging jet is reviewed. We focused on submerged jet that air issued into air or liquid issued into liquid. To control and enhance the heat transfer in single jet, researchers have performed a lot of experiments by considering the nozzle geometry, impinging surface and active method such as jet vibration, secondary injection and suction flow. The studies on multiple jet have been mainly focused on finding out the optimum condition and on investigating many different factors concerned with application condition (crossflow, rotation and geometry etc.) and combined techniques (rib turbulator, pin fin, dimple and effusion hole etc.). All most experiments showed the detailed heat transfer data by using liquid crystal method, infrared camera technique and naphthalene sublimation method. Many numerical calculations have been performed to investigate the flow and heat transfer characteristics in laminar jet region. Various turbulence models such as $k-\varepsilon-\bar{\nu^2}$, modified $k-\varepsilon-f_{\mu}$ were applied to the calculation for turbulent jet and the predicted results showed a good agreement with the experimental data. Although a lot of studies on impinging jet have performed consistently up to recently, further studies are still required to understand the flow and heat transfer characteristics more accurately, and to give a guideline for optimum impinging jet design in various applications.

Preexsiting Suprathermal Electrons and Preacceleration at Quasi-Perpendicular Shocks in Merging Galaxy Clusters

  • Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung;Kim, Sunjung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.51.1-51.1
    • /
    • 2021
  • Merger shocks with Ms < ~ 3 - 4 have been detected in galaxy clusters through radio observations of synchrotron radiations emitted from cosmic-ray (CR) electrons. The CR electrons are believed to be produced by the so-called diffusive shock acceleration (DSA) at the merger shocks. To describe the acceleration of electrons, the injection into DSA has to be understood. Recent studies have showed that electrons could be energized through stochastic shock drift acceleration (SSDA), a mechanism mediated by multi-scale plasma waves at shock transition zone. However, such preacceleration process seems to be effective only at the supercritical shocks with Ms > ~ 2.3, implying that further studies should be done to explain radio relics with weaker shocks. In this talk, we present the results obtained by fully kinetic 2D particle-in-cell (PIC) simulations, which include pre-existing suprathermal electrons possibly ejected from active galactic nuclei (AGNs) or produced by previous episodes of turbulence/shocks. The simulations indicate that the pre-existing electrons enhance the upstream plasma waves in shocks with Ms < ~ 2.3. However, the wavelength of such waves is not long enough to scatter off suprathermal electrons and energize them to the injection momentum for DSA. Hence, we conclude that preexciting suprathermal electrons alone would not solve the problem of electron acceleration at radio relic shocks.

  • PDF