• 제목/요약/키워드: active noise control

검색결과 856건 처리시간 0.024초

PRINCIPLES OF AN ACTIVE NOISE AND VIBRATION CONTROL SYSTEM CONSTRUCTION FOR SHIP

  • Maslov, Viatcheslav L.;Soloveitchik, Leonid I.
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.860-863
    • /
    • 1994
  • Main sources of increased vibrations and air noise on ship are main and auxiliary engines and ship ducts. The various ways of transfer of vibration energy and air noise in passenger cabin of a vessel require, in general case, of various methods of attenuation. The transfer of vibration energy from engines through a support requires, alongside with shock-absorbers, availability active shock-absorbers. The transfer of vibration energy and hydrodynamic noise on ship ducts requires availability, alongside with flexible muffler, active mufflers. The availability of air noise from working equipment can require, along with absorbent covers, of space systems of active noise control. In the given article it is spoken about the unified approach to formation of the block-diagram of active noise and vibration control. The complex approach permits to receive additional efficiency in reduction of noise in passenger cabin of vessels.

  • PDF

전달경로의 차이를 이용한 새로운 차량용 능동 머플러의 개발 (New Active Muffler System Utilizing Destructive Interference by Difference of Transmission Paths)

  • 황요하;이종민;김승종
    • 한국소음진동공학회논문집
    • /
    • 제12권5호
    • /
    • pp.374-379
    • /
    • 2002
  • A new active muffler system has been developed and its superior performance on both noise reduction and engine torque increase is demonstrated with experiment. Main characteristic of the proposed muffler system is the use of destructive interference by transmission path difference of divided exhaust pipes to reduce major exhaust noise components thereby overcoming problems of other active exhaust noise control methods. The exhaust pipe is divided into two sections and joined again downstream. One divided pipe has a sliding mechanism to vary its length, which is controlled to make half wavelength transmission path difference for the major engine rpm frequency. In this system one divided pipe is used to control major rpm frequency and its Harmonics and another pipe is used to control noise component double the frequency of rpm. An after-market tuning muffler, which has very simple internal structure and minimal back pressure, is also installed to remove remaining wideband noise. To make the system to be small enough to be practical, conventional muffler is also installed and used in low rpm range and active muffler is only employed in high rpm range. Noise reduction of the proposed system is comparable to conventional passive muffler. The engine dynamo test has proved the proposed system can recover almost all the torque lost by conventional muffler.

음원을 둘러싼 인클로저 개구부를 통해 투과되는 소음의 능동 제어 (Active Control of Transmitted Noise through Opening of Enclosures Surrounding a Noise Source)

  • 이한울;홍진숙;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.796-802
    • /
    • 2013
  • In this study, we investigates active control technology to reduce the noise transmitted to the outside through the opening of enclosures. A numerical model based on acoustic boundary element method is first established. Using the numerical model, the acoustic transfer functions of the field points over the opening to the primary source at arbitrary locations are estimated. The feedforward control to minimize the acoustic power through the opening is then numerically implemented. The controller generates the secondary source to destructively interfere the noise transmission through the opening. Finally, a parametric study is conducted to evaluate the effects of the location and the number of the microphones on the control performance. Furthermore, the effects of the location of the secondary source on the performance of active noise control are investigated. It is followed that the control system implemented in this study leads to a significant reduction of about 35dB in sound power through the open using only on secondary source located at the optimized position.

  • PDF

덕트 내부 소음의 능동 소음 제어 (Active Noise Control for Sound Propagation in a Duct)

  • 최경호;김일환
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.317-322
    • /
    • 1998
  • The purpose of this present experiments was to simulate the Active noise control system using MATLAB Tool kit. The Least-Mean-Square algorithm is the most applicable one to optimize the ANC systems, even it has tight limitation. This paper shows the influence of choosing step size to the performance of the LMS adaptive filters. In addition to the simulation, this paper describes the method to design the filtered LMS algorithm to get the better performance in Active noise control. It contains the secondary-path modeling to realize the real Active noise control system in the requesting fields.

  • PDF

무부하 압축기에 의한 냉장고 기계실 소음의 능동제어 (Active Control of Noise Transmitted through Ventilation Openings of the Machinery Room of Refrigerator)

  • 구정모;정의봉;김태훈;홍진숙
    • 한국소음진동공학회논문집
    • /
    • 제26권4호
    • /
    • pp.475-482
    • /
    • 2016
  • The active control of noise generated by the compressor and transmitted out of the machine room through the windows is implemented based on the FIR filter. The machine room contains most of noise sources of electric home appliances, air-conditioners and refrigerators, for example. To actively reduce the noise from the machinery room. In this paper, the transfer function of the controller for minimization of the acoustic power transmitted through the windows is mathematically formulated. The transfer functions required for implementation of the active controller are the measured. The measurements are conducted in this initial stage under the operation of the compressor with no load. For improvement of the reliability of the transfer function of the compressor to the acoustic power, additional operational measurements are performed. The real time controller is implemented based on the FIR filter using the measured transfer functions and the performance of the active controller is estimated. Control performance is measured about 3 dB ~ 10 dB in reduction of the sound power at the peaks of the compressor noise.

자기동조 피이드백 제어기를 이용한 적응 능동소음제어에 관한 연구 (A Study on the Adaptive Active Noise Control Using the Self-tuning feedback controller)

  • 신준;이태연;김흥섭;조성오;방승현;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1993년도 춘계학술대회논문집; 한국과학연구소, 21 May 1993
    • /
    • pp.140-146
    • /
    • 1993
  • Active noise control uses the intentional superposition of acoustic waves to create a destructive interference pattern such that a reduction of the unwanted sound occurs. In active noise control system the choice of a control structure and design of the controller are the main issues of concern. In real acoustic fields there are a vast number of noise sources with time-varying nature and the characteristics of transducers and the geometric set-up of control system are subject to change. Accordingly the control system should be designed to adapt such circumstances so that required level of performance is maintained. In this paper, the adaptive control algorithm for self-tuning adaptive controller is presented for the application in active noise control system. Self-tuning is a direct integration of identification and controller design algorithm in such a manner that the two processes proceed sequentially. The least mean square algorithm was used for the identification schemes and adaptive weighted minimum variance control algorithm was applied for self-tuning controller. Computer simulation results for self-tuning feedback controller are presented. And simulation results was shown to be useful for the situation in which the periodic noise sources act on the acoustic field.

  • PDF

L-Point Running Average Filter를 이용한 급가속 흡기계의 능동소음제어 성능향상을 위한 알고리즘 개발 (Development of Active Intake Noise Control Algorithm for Improvement Control Performance under Rapid Acceleration and Disturbance)

  • 전기원;조용구;오재응;이정윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.780-783
    • /
    • 2004
  • Recently Intake noise has been extensively studied to reduce the engine noise. In order to diminish intake noise several resonators were added to the intake system. However this can cause a reduction of engine output power and an increase of fuel consumption. In this study, active noise control simulation of the Filtered-x LMS algorithm is applied real instrumentation intake noise data under rapid acceleration because intake noise is more excessively increased under the such a harsh condition. But the FXLMS algorithm has poor control performance when the system is disturbed. Thus modified FXLMS algorithm using L-point running average filter is developed to improve the control performance under the rapid acceleration and disturbance. The noise reduction quantity of modified Filtered-x LMS algorithm is more than original one in two cases. In the case of control for real instrumentation intake noise data, maximum residual noise of modified FXLMS algorithm is 2.5 times less than applied the FXLMS and also in the case of disturbed, the modified FXLMS algorithm shows excellent control performance but FXLMS algorithm cat not control.

  • PDF

RCMAC 및 PSO 기법을 이용한 능동 소음제어 시스템 성능 개선 (Performance Improvement of the Active Noise Control System Using RCMAC and PSO Method)

  • 한성익;신종민;김새한;이권순
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1900-1907
    • /
    • 2010
  • In this paper, a recurrent cerebellar modulation articulation control with praticle swarm optimization (PSO) method has been investigated for improvement of noise attenuation performance in active noise control system. For narrow band noise, FXLMS and RCMAC has a partial satisfactory noise attenuation. However, noise attenuation performance is poor for broad band noise and nonlinear path since it has linear filter structure. To improve this problem, a RCMAC with PSO is proposed and it is shown that satisfactory noise attenuation performance is obtained by some simulations in duct system using harmonic motor noise and KTX cabin noise as a noise source.

원거리 소음 제거를 위한 능동방음막 구현 (Implementation of Active Noise Curtains for Long Distance Noise)

  • 남현도;귄혁
    • 조명전기설비학회논문지
    • /
    • 제18권1호
    • /
    • pp.154-160
    • /
    • 2004
  • 본 논문에서는 공간 외부의 원거리에 위치하는 소음원에 의하여, 창문 등을 통해 실내 공간에 소음이 전파될 때, 능동소음제어 기법을 이용하여 이를 제어하는 능동 방음막 (active noise curtain)을 구현하였다. 적응필터 알고리즘으로 다중채널 LMS 알고리즘을 사용하는 기법과 소음원이 원거리에 있을 때는 소음의 특성이 평면파에 가깝다는 가정 하에 제어용 스피커 수만큼의 단일채널 LMS 알고리즘을 사용하는 기법을 제시하였으며 적응필터의 안정도를 향상시키기 위하여 IIR 필터의 안정도를 향상시키는 안정화 기법을 제안하였다. TMS320VC33 DSP보드를 이용하여 제안된 기법을 정현파 소음 및 도로 소음에 대해 실험을 수행한 결과 MCLMS를 사용한 경우와 유사하거나 다소 나은 결과를 보였으며 제안한 기법이 실제 적용 시에는 제어용 스피커와 마이크로폰을 일체형으로 제작이 가능하여 하드웨어 실현에 유리하고 설치비도 절약되리라 예상된다.

능동방음벽 시스템의 제어 음원 위치 선정에 미치는 최적화 기법 성능 비교 연구 (A Study on the Performance Comparison of Optimization Techniques on the Selection of Control Source Positions in an Active Noise Barrier System)

  • 임형진;백광현
    • 한국소음진동공학회논문집
    • /
    • 제15권8호
    • /
    • pp.911-917
    • /
    • 2005
  • There were many attempts to reduce noise behind the noise barrier using active control techniques. Omoto(1993) Shao(1997) and Yang(2001) tried to actively control the diffracted noise behind the barrier and main concerns were about the arrangement methods for the control sources. Baek (2004) tried to get better results using the simulated annealing method and the sequential searching technique. The main goal of this study is to develop and compare the performance of several optimization techniques including those mentioned above, hybrid version of simulated annealing and genetic algorithm for the optimal control source positions of active noise barrier system. The simulation results show fairly similar performance lot the small size of searching problem. However, as the number of control sources are increased, the performance of simulated annealing algorithm and genetic algorithm are better than the others. Simulations are also made to show the performance of the selected optimal control source positions not only at the receiver position but at the surrounding volume of the receiver position and plotted the noise reduction level in 3-D.