• 제목/요약/키워드: active network

Search Result 1,645, Processing Time 0.028 seconds

Routing and Reliable Transmission of Active Packets in W Networks (IP 망에서 액티브 패킷의 경로 설정 및 신뢰성 전송)

  • Yoon, Bo-Young;Chae, Ki-Joon;Nam, Taek-Yong
    • The KIPS Transactions:PartC
    • /
    • v.9C no.6
    • /
    • pp.875-882
    • /
    • 2002
  • The active packets unlike traditional IP packets should be executed at each active node along their path. To execute the active program at each active node, the active packets for an active program should go through the same active nodes and all packets are delivered without any loss. This paper presents the new active engine for every active packet which execute an active program to be routed through the same intermediate active nodes and to be delivered reliably. Proposed active engine requires fewer changes to existing IP protocols and guarantees the reliable delivery of the active packets. Moreover, even if the sender does not have any information about the intermediate nodes every active packet is routed through the same intermediate active nodes. The simulation results show that proposed active engine achieves an efficient transmission with high data delivery and low communication overhead compared with the other existing transmission protocols.

A Study of Digital Message Transfer System based on R-NAD for FM Radios (FM무전기를 통한 디지털 메시지 전송장비에 R-NAD 적용 연구)

  • Rho, Hai-Hwan;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.523-526
    • /
    • 2010
  • FM Radio communication operating mode is half-duplex mode. FM radio network access control shall be used to detect the presence of active transmissions on a multiple-subscriber-access communications network and shall provide a means to preclude data transmissions from conflicting on the network. In this study, we implemented R-NAD(Random Network Access Delay) that is one of network access control method.

  • PDF

National Comparative Study on the Technology Ecosystem of the Smart Surgical Medical System: Focused on the Patent Data Analysis (스마트 수술 의료시스템 기술 생태계에 대한 국가 간 비교 연구: 특허 데이터 분석을 중심으로)

  • Sawng, Yeong-wha;Choi, Jinwoo;Joung, Seokin;Lim, Seonyeong
    • Journal of Information Technology Applications and Management
    • /
    • v.27 no.1
    • /
    • pp.125-145
    • /
    • 2020
  • We explore technology ecosystem of smart surgical medical system by analyzing patent data applied for in Korea and Japan. First, a review of trends of patent application by country/technological domain show that there exist a minority of technology domains focused on R&D, which represent their trends have been increasingly active. Also, while a number of Japanese firms mainly consist of the patent market of Japan, in case of the Korean market, a few universities, SMEs, and foreign firms are found to be the main applicants. As a result of the network analysis with the links as the relations of co-patenting, the relationships, which are active of convergence and knowledge spillover among the heterogeneous technology domains within each market, as well as the technology domains, which are the most active in international cooperation among each homogeneous domain, could get derived and visualized in the ecosystem. In addition, the technology domains in each patent market with leading locations, roles, and influence in the network can also be identified through the centrality analysis. In this study, the analysis for technology competitiveness are carried out focusing on patent activity and patent impact. The results denote that across all domains, the Japanese market may possess higher patent activity and patent impact compared to the Korean market. In consequence, we derive the position map for comparison by country and technology domain from a perspective considering comprehensively the multi-dimensional attributes based on the results of both network analysis and technology competitiveness.

Network Pharmacology: Prediction of Astragalus Membranaceus' and Cornus Officinalis' Active Ingredients and Potential Targets to Diabetic Nephropathy (네트워크 약리학을 통한 당뇨병성 신병증에서의 황기와 산수유의 활성 성분 및 잠재 타겟 예측)

  • Lee, Keun-Hyeun;Rhee, Harin;Jeong, Han-Sol;Shin, Sang Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.6
    • /
    • pp.313-327
    • /
    • 2017
  • The purpose of this study is to predict the effects of macroscopic and integrative therapies by finding active ingredients, potential targets of Astragalus membranaceus (Am) and Cornus officinalis (Co) for diabetic nephropathy. We have constructed network pharmacology-based systematic and network methodology by system biology, chemical structure, chemogenomics. We found several active ingredients of Astragalus membranaceus (Am) and Cornus officinalis (Co) that were speculated to bind to specific receptors which had been known to have a role in the progression of diabetic nephropathy. Four components of Am and eleven components of Co could bind to iNOS; two ingredients of Am and six ingredients of Co could docking to cGB-PDE; one component of Am and nine components of Co could bind to ACE; three ingredients of Co with neprilysin; three components of Co with ET-1 receptor; four ingredients of Am and fourteen ingredients of Co with mineralocorticoid receptor; one component of Am and seven components of Co with interstitial collagenase; one ingredient of Am and ten ingredients of Co with membrane primary amine oxidase; one component of Am and four components of Co with JAK2; two ingredients of Am and one ingredient of Co with MAPK 12; one component of Am and five components of Co could docking to TGF-beta receptor type-1. From this work we could speculate that the possible mechanisms of Am and Co for diabetic nephropathy are anti-inflammatory, antioxidant and antihypertensive effects.

Target Classification of Active Sonar Returns based on Convolutional Neural Network (컨볼루션 신경망 기반의 능동소나 표적 식별)

  • Kim, Jeong-Hun;Choi, Dae-Sung;Lee, Hyung-Soo;Lee, Jung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1909-1916
    • /
    • 2017
  • Recently, deep learning algorithms have good performance in various fields, but they are not actively applied to sonar systems. In this study, we carried out experiments to classify active sonar returns into a metal object such as a mine and a rock using a convolutional neural network which is one of the deep learning algorithms. Data augmentation is applied on this paper to avoid overfitting and increase performance. And we analyzed performance variation depending on hyperparameter value and change of the number of training data through data augmentation. The experiments are performed with two training data; an aspect-angle independent and an aspect-angle dependent. As a result, the performances are 88.9% and 94.9% in aspect-angle independent and dependent, respectively. These are up to 4.5% point higher than the performance obtained by applying artificial neural network and support vector machine algorithm in the previous study.

Design and Implementation of Multi-rate Broadcast based Link Quality Measurement for WLAN Mesh Network (다중 전송률을 반영한 무선랜 매쉬 링크 품질 측정방법의 설계 및 구현)

  • Lee, Duck-Hwan;Yang, Seung-Chur;Kim, Jong-Deok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9A
    • /
    • pp.801-808
    • /
    • 2011
  • We propose MBAP(Multi-rate Broadcast Active Probing) technique to get the right measurements for link quality in Wireless Mesh Network (WMN). Most routing protocols for WMN make use of link quality-aware routing metrics, such as ETX(Expected Transmission Count) and ETT(Expected Transmission Time), while the hop count is usually used in MANET (Mobile Ad-hoc NETwork). A broadcast based active proving technique is adopted in the previous studies to get the ETX or ETT of a link. However this technique does not reflect the multi-rate feature of WLAN because it uses a single fixed transmission rate for broadcast which usually differs from the actual rate used in data transmissions. MBAP overcomes this shortage by exploiting various rate broadcast frames for probing. We implement MBAP on linux system by modifying WLAN driver and related kernel sub-systems. Experimental results show that MBAP can capture link quality more accurately than the existing techniques.

Power Efficient Network Scanning Algorithm Based on IEEE 802.11k-Measurement Pilot (IEEE 802.11k-Measurement Pilot을 활용한 저전력 네트워크 스캐닝 알고리즘)

  • Lee, Hyung Kyu;Kim, Hwangnam;Kim, Hyunsoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.6
    • /
    • pp.482-489
    • /
    • 2014
  • This paper suggests the new network scanning algorithm that makes use of measurement pilot of IEEE 802.11k. The purpose of suggesting this algorithm is to improve the existing network scanning schemes. After introducing new algorithm, this paper shows the difference of time property and energy property between former scanning schemes and new scheme with simulation results. Passive scan has a merit of low-power consumption but it takes too long time to fulfill whole scanning. On the contrary, an advantage of active scan is speed but it consumes more battery power than passive scan. By using measurement pilot's smaller interval than beacon interval, the suggested algorithm can consume less power than active scan does, and also make shorter scanning delay than passive scan does.

Integrative applications of network pharmacology and molecular docking: An herbal formula ameliorates H9c2 cells injury through pyroptosis

  • Zhongwen Qi;Zhipeng Yan;Yueyao Wang;Nan Ji;Xiaoya Yang;Ao Zhang;Meng Li;Fengqin Xu;Junping Zhang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.228-236
    • /
    • 2023
  • Background: QiShen YiQi pills (QSYQ) is a Traditional Chinese Medicine (TCM) formula, which has a significant effect on the treatment of patients with myocardial infarction (MI) in clinical practice. However, the molecular mechanism of QSYQ regulation pyroptosis after MI is still not fully known. Hence, this study was designed to reveal the mechanism of the active ingredient in QSYQ. Methods: Integrated approach of network pharmacology and molecular docking, were conducted to screen active components and corresponding common target genes of QSYQ in intervening pyroptosis after MI. Subsequently, STRING and Cytoscape were applied to construct a PPI network, and obtain candidate active compounds. Molecular docking was performed to verify the binding ability of candidate components to pyroptosis proteins and oxygen-glucose deprivation (OGD) induced cardiomyocytes injuries were applied to explore the protective effect and mechanism of the candidate drug. Results: Two drug-likeness compounds were preliminarily selected, and the binding capacity between Ginsenoside Rh2 (Rh2) and key target High Mobility Group Box 1 (HMGB1)was validated in the form of hydrogen bonding. 2 μM Rh2 prevented OGD-induced H9c2 death and reduced IL-18 and IL-1β levels, possibly by decreasing the activation of the NLRP3 inflammasome, inhibiting the expression of p12-caspase1, and attenuating the level of pyroptosis executive protein GSDMD-N. Conclusions: We propose that Rh2 of QSYQ can protect myocardial cells partially by ameliorating pyroptosis, which seems to have a new insight regarding the therapeutic potential for MI.