• Title/Summary/Keyword: active network

Search Result 1,645, Processing Time 0.033 seconds

Systematic exploration of therapeutic effects and key mechanisms of Panax ginseng using network-based approaches

  • Young Woo Kim;Seon Been Bak;Yu Rim Song;Chang-Eop Kim;Won-Yung Lee
    • Journal of Ginseng Research
    • /
    • v.48 no.4
    • /
    • pp.373-383
    • /
    • 2024
  • Background: Network pharmacology has emerged as a powerful tool to understand the therapeutic effects and mechanisms of natural products. However, there is a lack of comprehensive evaluations of network-based approaches for natural products on identifying therapeutic effects and key mechanisms. Purpose: We systematically explore the capabilities of network-based approaches on natural products, using Panax ginseng as a case study. P. ginseng is a widely used herb with a variety of therapeutic benefits, but its active ingredients and mechanisms of action on chronic diseases are not yet fully understood. Methods: Our study compiled and constructed a network focusing on P. ginseng by collecting and integrating data on ingredients, protein targets, and known indications. We then evaluated the performance of different network-based methods for summarizing known and unknown disease associations. The predicted results were validated in the hepatic stellate cell model. Results: We find that our multiscale interaction-based approach achieved an AUROC of 0.697 and an AUPR of 0.026, which outperforms other network-based approaches. As a case study, we further tested the ability of multiscale interactome-based approaches to identify active ingredients and their plausible mechanisms for breast cancer and liver cirrhosis. We also validated the beneficial effects of unreported and top-predicted ingredients, in cases of liver cirrhosis and gastrointestinal neoplasms. Conclusion: our study provides a promising framework to systematically explore the therapeutic effects and key mechanisms of natural products, and highlights the potential of network-based approaches in natural product research.

Single-Tuned Active Filter with Function of Double-Tuned Active Filter (Double Tuned Active Filter 기능을 갖는 Single Tuned Active Filter)

  • Kim Chan-Ki;Yang Byeong-Mo;Jung Gil-Jo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.544-552
    • /
    • 2004
  • This paper deals with the hybrid active filter which can reduce the 11th/13th harmonics in AC network by using the single tuned filter. Since the proposed algorithm uses the detuning compensation capability of the filter, the output voltage of the proposed active power filter is changed according to the capacitance of capacitors, magnitude of harmonic current, resonance frequency and control mode. In this paper, the control characteristics and the design of hybrid active filter is investigated. A new hybrid active filter with new algorithm, which is an active filter with single tuned filter instead of double tuned filter, is proposed.

DDoS Attack Response Framework using Mobile Code (DDoS 공격 대응 프레임워크 설계 및 구현)

  • Lee, Young-seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.3
    • /
    • pp.31-38
    • /
    • 2010
  • It has become more difficult to correspond an cyber attack quickly as patterns of attack become various and complex. However, current security mechanisms just have passive defense functionalities. In this paper, we propose new network security architecture to respond various cyber attacks rapidly and to chase and isolate the attackers through cooperation between security zones. The proposed architecture makes it possible to deal effectively with cyber attacks such as IP spoofing or DDoS(Distributed Denial of Service), by using active packet technology including a mobile code on active network. Also, it is designed to have more active correspondent than that of existing mechanisms. We implemented these mechanisms in Linux routers and experimented on a testbed to verify realization possibility of attacker response framework using mobile code. The experimentation results are analyzed.

  • PDF

Attacker Response Framework using Mobile Code (이동 코드를 이용한 공격자 대응 프레임워크)

  • Bang Hyo-Chan;Him Jin-Oh;Na Jung-Chan;Jang Joong-Su;Lee Young-Suk
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.959-970
    • /
    • 2004
  • It has become more difficult to correspond an cyber attack quickly as patterns of attack become various and complex. However, current so curity mechanisms just have passive defense functionalities. In this paper, we propose new network suity architecture to respond various cyber attacks rapidly and to chase and isolate the attackers through cooperation between security zones. The proposed architecture makes it possible to deal effectively with cyber attacks such as IP spoofing or DDoS(Distributed Denial of Service), by using active packet technology including a mobile code on active network. Also, it is designed to have more active correspondent than that of existing mechanisms. We im-plemented these mechanisms in Linux routers and experimented on a testbed to verify realization possibility of attacker response framework using mobile code. The experimentation results are analyzed.

A scheme of EEMR protocol for energy efficient in wireless sensor networks (EEMR 프로토콜을 이용한 무선 센서 네트워크 노드의 에너지 소비 절감 방법)

  • Cho, Ik-Lae;Lee, Ho-Sun;Lee, Kyoon-Ha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.229-237
    • /
    • 2005
  • One of the important issues of in this research is effective usage of energy to increase life time of nodes which form a network. Existing LEEM protocol causes unnecessary active time due to small packets with shorter transfer time than active interval period of node and packets with transfer time of more than twice of active interval period of node. In this paper, we propose Energy-Efficient MAC by Reservation (EEMR) protocol which can increase energy effectiveness in wireless sensor network environment by reducing unnecessary active time using a method that reserves next-hop depend upon the size of packet. We evaluated effectiveness of our proposed method through experiments. The result showed that using EEMR protocol had better energy effectiveness than existing LEEM protocol by 15%.

  • PDF

Structural Design of Optical Access Network for IPOW Service (IPOW 서비스를 위한 광액세스망 구조 설계)

  • Lee, Sang-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5140-5147
    • /
    • 2013
  • This paper presents a new idea of structural design of the optical access network for IPOW(IP over WDM) services. More efficient network can be constructed, because the IP packets are transmitted directly to the WDM without going through an intermediate layer of networks. The wavelength Routing is based on a label switching technology. The ability to transmission of high volume traffics and QoS capability of the optical label switching directly to the end user of the IPOW optical internet networks is provided. As in AON(Active Optical Network) flexible bandwidth on demand subscribers is allocated. By the Simulation of the proposed optical access networks to measure the BER(Bits Error Ratio) at the end of the nodes the network characteristics are analyzed. These results are based on the design of efficient optical network.

A Model Reference Variable Structure Control based on a Neural Network System Identification for an Active Four Wheel Steering System

  • Kim, Hoyong;Park, Yong-Kuk;Lee, Jae-Kon;Lee, Dong-Ryul;Kim, Gi-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.142-155
    • /
    • 2000
  • A MIMO model reference control scheme incorporating the variable structure theory for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of continuous-time nonlinear dynamics with known or unknown uncertainties. The scheme employs an neural network to identify the plant systems, where the neural network estimates the nonlinear dynamics of the plant. By the Lyapunov direct method, the algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed and it is not necessary to know the exact structure of the system. With the resulting identification model which contains the neural networks, it does not need higher degrees of freedom vehicle model than 3 degree of freedom model. Th proposed scheme is applied to the active four wheel system and shows the validity is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the reduction of yaw rate overshoot of a typical mid-size car improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response and smaller side angle than the 2WS case.

  • PDF

A nonlinear structural experiment platform with adjustable plastic hinges: analysis and vibration control

  • Li, Luyu;Song, Gangbing;Ou, Jinping
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.315-329
    • /
    • 2013
  • The construction of an experimental nonlinear structural model with little cost and unlimited repeatability for vibration control study represents a challenging task, especially for material nonlinearity. This paper reports the design, analysis and vibration control of a nonlinear structural experiment platform with adjustable hinges. In our approach, magnetorheological rotary brakes are substituted for the joints of a frame structure to simulate the nonlinear material behaviors of plastic hinges. For vibration control, a separate magnetorheological damper was employed to provide semi-active damping force to the nonlinear structure. A dynamic neural network was designed as a state observer to enable the feedback based semi-active vibration control. Based on the dynamic neural network observer, an adaptive fuzzy sliding mode based output control was developed for the magnetorheological damper to suppress the vibrations of the structure. The performance of the intelligent control algorithm was studied by subjecting the structure to shake table experiments. Experimental results show that the magnetorheological rotary brake can simulate the nonlinearity of the structural model with good repeatability. Moreover, different nonlinear behaviors can be achieved by controlling the input voltage of magnetorheological rotary damper. Different levels of nonlinearity in the vibration response of the structure can be achieved with the above adaptive fuzzy sliding mode control algorithm using a dynamic neural network observer.

Intelligent IIR Filter based Multiple-Channel ANC Systems (지능형 IIR 필터 기반 다중 채널 ANC 시스템)

  • Cho, Hyun-Cheol;Yeo, Dae-Yeon;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1220-1225
    • /
    • 2010
  • This paper proposes a novel active noise control (ANC) approach that uses an IIR filter and neural network techniques to effectively reduce interior noise. We construct a multiple-channel IIR filter module which is a linearly augmented framework with a generic IIR model to generate a primary control signal. A three-layer perceptron neural network is employed for establishing a secondary-path model to represent air channels among noise fields. Since the IIR module and neural network are connected in series, the output of an IIR filter is transferred forward to the neural model to generate a final ANC signal. A gradient descent optimization based learning algorithm is analytically derived for the optimal selection of the ANC parameter vectors. Moreover, re-estimation of partial parameter vectors in the ANC system is proposed for online learning. Lastly, we present the results of a numerical study to test our ANC methodology with realistic interior noise measurement obtained from Korean railway trains.

Increasing Throughput in Energy-Based Opportunistic Spectrum Access Energy Harvesting Cognitive Radio Networks

  • Yao, Yuanyuan;Yin, Changchuan;Song, Xiaoshi;Beaulieu, Norman C.
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.340-350
    • /
    • 2016
  • The performance of large-scale cognitive radio (CR) networks with secondary users sustained by opportunistically harvesting radio-frequency (RF) energy from nearby primary transmissions is investigated. Using an advanced RF energy harvester, a secondary user is assumed to be able to collect ambient primary RF energy as long as it lies inside the harvesting zone of an active primary transmitter (PT). A variable power (VP) transmission mode is proposed, and an energy-based opportunistic spectrum access (OSA) strategy is considered, under which a secondary transmitter (ST) is allowed to transmit only if its harvested energy is larger than a predefined transmission threshold and it is outside the guard zones of all active PTs. The transmission probability of the STs is derived. The outage probabilities and the throughputs of the primary and the secondary networks, respectively, are characterized. Compared with prior work, the throughput can be increased by as much as 29%. The energy-based OSA strategy can be generally applied to a non-CR setup, where distributed power beacons (PBs) are deployed to power coexisting wireless signal transmitters (WSTs) in a wireless powered sensor network.