• Title/Summary/Keyword: active motion

Search Result 921, Processing Time 0.032 seconds

Optimal Facial Emotion Feature Analysis Method based on ASM-LK Optical Flow (ASM-LK Optical Flow 기반 최적 얼굴정서 특징분석 기법)

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.512-517
    • /
    • 2011
  • In this paper, we propose an Active Shape Model (ASM) and Lucas-Kanade (LK) optical flow-based feature extraction and analysis method for analyzing the emotional features from facial images. Considering the facial emotion feature regions are described by Facial Action Coding System, we construct the feature-related shape models based on the combination of landmarks and extract the LK optical flow vectors at each landmarks based on the centre pixels of motion vector window. The facial emotion features are modelled by the combination of the optical flow vectors and the emotional states of facial image can be estimated by the probabilistic estimation technique, such as Bayesian classifier. Also, we extract the optimal emotional features that are considered the high correlation between feature points and emotional states by using common spatial pattern (CSP) analysis in order to improvise the operational efficiency and accuracy of emotional feature extraction process.

Development of the Active Ankle Foot Orthosis to Induce the Normal Gait for the Paralysis Patients (마비 환자의 정상적 보행을 위한 능동형 단하지 보조기 개발)

  • Hwang, Sung-Jae;Kim, Jung-Yoon;Hwang, Seon-Hong;Park, Sun-Woo;Yi, Jin-Bock;Kim, Young-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.131-136
    • /
    • 2007
  • In this study, we developed an active ankle-foot orthosis(AAFO) which can control dorsi/ plantar flexion of the ankle joint to prevent foot drop and toe drag during walking. 3D gait analyses were performed on five healthy subjects under three different gait conditions: the normal gait without AFO, the SAFO gait with the conventional plastic AFO, and the AAFO gait with the developed AFO. As a result, the developed AAFO preeminently induced the normal gait compared to the SAFO. Additionally, AAFO prevented foot drop by proper plantarflexion during loading response and provided enough plantarflexion moment as a driving force to walk forward by sufficient push-off during pre-swing. AAFO also could prevent toe drag by proper dorsiflexion during swing phase. These results indicate that the developed AAFO may have more clinical benefits to treat foot drop and toe drag, compared to conventional AFOs, and also may be useful in patients with other orthotic devices.

Vibration Reduction of Composite Helicopter Blades using Active Twist Control Concept (능동 비틀림 제어기법을 이용한 복합재료 로터 블레이드의 진동 억제)

  • Pawar, Prashant M.;You, Young-Hyun;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. The piezoceramic shear actuation mechanism along with elastic couplings of composite blades is used for vibration reduction. The rotor blades are modeled as composite box-beams with actuator layers bonded on the outer surfaces of the thin-walled section. The governing equations of motion for helicopter blades are obtained using Hamilton's principle. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. Various rotor configurations with different elastic couplings with appropriate actuator placement are used to investigate the hub vibration characteristics. Numerical results show that a substantial reduction of $N_b$/rev hub vibration can be achieved using the optimal control algorithm.

Application of Adaptive Control for the U Type TLD (U자형 TLD시스템에 대한 적응제어 적용)

  • Ga, Chun-Sik;Shin, Young-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.518-521
    • /
    • 2005
  • The Structures or buildings nowadays draw more complexity in design due to space limitation and other factor that affect the height and dimensions, that results to instability. So the various methods have been carried out to improve the safety factor from an earthquake or a boom until recently. But, it is very hard to get model precisely because these structures are the non-linear and multi-variable systems. For this reason, we developed the active control system that is applied the adaptive control method on the U type Tuned Liquid Damper(TLD) passive control system. It is proven that the proposed active control strategy of the plate carrying U type TLD system is the more effective control method to suppress the vibration of the structure. The entire hybrid control system is composed of the actuator acted in the opposite direction of the TLD system's motion direction and the active control device with an air pressure adjuster. This paper proposed the adaptive control methods to improve the problem of U type TLD system which is used widely for the passive control of the building. And it is proved by the simulation. In advanced, it is developed the pressure control method that is improved the hybrid controller's performance by using air chamber pressure controller. These methods take the advantage of the decrease of the maximum displacement by using the controller as soon as the impact is loaded. This is a very important element for the safety design and economic design of structures.

  • PDF

Latissimus Dorsi Transfer in Brachial Plexus Injury for the Elbow Flexion (상완 신경총 손상후 주관절 근력 회복을 위한 광배근 전이술)

  • Han, Chung-Soo;Chung, Duke-Whan;Soh, Jae-Ho
    • Archives of Reconstructive Microsurgery
    • /
    • v.7 no.1
    • /
    • pp.35-40
    • /
    • 1998
  • The incidence of brachial plexus injury is increasing because of the development of motor vehicle but the the results of treatment was reported poor due to its complex anatomical structure and changes of function and sensory during the recovery after trauma. But the results of treatment has been improved by the recently introduced high sensitive diagnostic method that can evaluate accurately the site and extent of the injury and treatment method. Restoration of the elbow flexion is the most important goal of treatment after brachial plexus injury and nerve graft, neurotization and muscle transfer were used for methods of treatment. From December 1992 to May 1994, the author performed 6 cases of latissimus dorsi transfer at the same side for the improvement of elbow flexion in the patients of brachial plexus injury. There were 5 cases of male, one case of female and average age was 22 years old. The causes of injury were traffic accident in 3 cases, gun shot injury, falldown and birth injury in each one case and in all cases, the type of injury were upper arm type. The average follow up period were 1 year 5 months ranging from 12 months to 4 years 5 months. In all cases, active elbow flexion was impossible before operation and average muscle power was grade I. We analysed the active range of motion, muscle power and the functional results. At the last follow up, range of active elbow flexion was average $124^{\circ}$ and flexion contracture was average 11 degrees and the average of muscle power was grade IV. In the functional analysis, there were two cases of excellent, three cases of good and 1 case of fair. There was no complications including wound infection, vascular compromise and donor site problem. The results of latissimus dorsi transfer for improvement elbow flexion in the patients of brachial plexus injury is one of the useful mettled for the restoration of elbow flexion.

  • PDF

A frequency tracking semi-active algorithm for control of edgewise vibrations in wind turbine blades

  • Arrigan, John;Huang, Chaojun;Staino, Andrea;Basu, Biswajit;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.177-201
    • /
    • 2014
  • With the increased size and flexibility of the tower and blades, structural vibrations are becoming a limiting factor towards the design of even larger and more powerful wind turbines. Research into the use of vibration mitigation devices in the turbine tower has been carried out but the use of dampers in the blades has yet to be investigated in detail. Mitigating vibrations will increase the design life and hence economic viability of the turbine blades and allow for continual operation with decreased downtime. The aim of this paper is to investigate the effectiveness of Semi-Active Tuned Mass Dampers (STMDs) in reducing the edgewise vibrations in the turbine blades. A frequency tracking algorithm based on the Short Time Fourier Transform (STFT) technique is used to tune the damper. A theoretical model has been developed to capture the dynamic behaviour of the blades including the coupling with the tower to accurately model the dynamics of the entire turbine structure. The resulting model consists of time dependent equations of motion and negative damping terms due to the coupling present in the system. The performances of the STMDs based vibration controller have been tested under different loading and operating conditions. Numerical analysis has shown that variation in certain parameters of the system, along with the time varying nature of the system matrices has led to the need for STMDs to allow for real-time tuning to the resonant frequencies of the system.

Effect of Pelvic Compression Belt on Abdominal Muscle Activity, Pelvic Rotation and Pelvic Tilt During Active Straight Leg Raise

  • Jo, Eun-young;An, Duk-hyun
    • Physical Therapy Korea
    • /
    • v.26 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • Background: Uncontrolled lumbopelvic movement leads to asymmetric symptoms and causes pain in the lumbar and pelvic regions. So many patients have uncontrolled lumbopelvic movement. Passive support devices are used for unstable lumbopelvic patient. So, we need to understand that influence of passive support on lumbopelvic stability. It is important to examine that using the pelvic belt on abdominal muscle activity, pelvic rotation and pelvic tilt. Objects: This study observed abdominal muscle activity, pelvic rotation and tilt angles were compared during active straight leg raise (ASLR) with and without pelvic compression belt. Methods: Sixteen healthy women were participated in this study. ASRL with and without pelvic compression belt was performed for 5 sec, until their leg touched the target bar that was set 20 cm above the base. Surface electromyography was recorded from rectus abdominis (RA), internal oblique abdominis (IO), and external oblique abdominis (EO) bilaterally. And pelvic rotation and tilt angles were measured by motion capture system. Results: There were significantly less activities of left EO (p=.042), right EO (p=.031), left IO (p=.039), right IO (p=.019), left RA (p=.044), and right RA (p=.042) and a greater right pelvic rotation angle (p=.008) and anterior pelvic tilt angle (p<.001) during ASLR with pelvic compression belt. Conclusion: These results showed that abdominal activity was reduced while the right pelvic rotation angle and anterior pelvic tilt angle were increased during ASLR with a pelvic compression belt. In other words, although pelvic compression belt could support abdominal muscle activity, it would be difficult to control pelvic movement. So pelvic belt would not be useful for controlled ASLR.

Arthroscopic-assisted Latissimus Dorsi Tendon Transfer for the Management of Irreparable Rotator Cuff Tears in Middle-aged Physically Active Patients

  • Lim, Tae Kang;Bae, Kyu Hwan
    • Clinics in Shoulder and Elbow
    • /
    • v.22 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Background: Latissimus dorsi (LD) tendon transfer is used as a treatment option for massive irreparable posterosuperior rotator cuff tears, and recently, an arthroscopic-assisted technique was introduced. This study was undertaken to evaluate the clinical and radiological outcomes of arthroscopic-assisted LD tendon transfer for the management of irreparable rotator cuff tears in active middle-aged patients. Methods: The records of five patients (two males) with irreparable tears involving the supraspinatus and infraspinatus tendons managed by arthroscopic-assisted LD tendon transfer were retrospectively reviewed. Clinical outcomes were assessed using the visual analogue scale (VAS) pain scale, American Shoulder and Elbow Surgeon's (ASES) scores, the University of California Los Angeles (UCLA) scale, and ranges of motion. Postoperative integrities of transferred tendon were evaluated by magnetic resonance imaging in 4 patients and by ultrasound in one. Results: Mean patient age was 55 years (range, 48-61 years), and mean follow-up period was 20 months (range, 12.0-27.2 months). Mean VAS score significantly improved from $6.6{\pm}2.6$ preoperatively to $1.8{\pm}2.5$ postoperatively (p=0.009), mean ASES score increased from $67.6{\pm}9.2$ to $84.6{\pm}15.1$, and mean UCLA score from $18.0{\pm}1.4$ to $28.8{\pm}8.5$ (all p<0.001). Postoperative imaging of the transferred LD tendon showed intact repair in 4 patients. The remaining patient experienced LD transfer rupture and a poor outcome. Conclusions: Arthroscopic-assisted LD tendon transfer improved shoulder pain and function in patients with massive, irreparable rotator cuff tears, and may be an option for this condition, especially in physically active patients.

Development of a Numerical Model Considering Active Tsunami Generation (능동적 지진해일 생성을 고려한 지진해일 수치모형 개발)

  • Jung, Taehwa;Hwang, Sooncheol;Son, Sangyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.4
    • /
    • pp.160-167
    • /
    • 2021
  • Seabed deformation due to the fault failure have both a spatial variation and temporal history. When the faulting process initiates at a certain point beneath seabed, the failure spreads out to neighboring points, resulting in temporal changes of deformation. In particular, such a process induces tsunami waves from the vertical motion of seabed. The uprising speed of seabed affects the formation of initial surface profile, eventually altering the arrival time and runup of tsunamis at the coast. In this work, we developed a numerical model that can simulate the generation and propagation of tsunami waves by considering the horizontal and vertical changes of seabed in an active and dynamic manner. For the verification of the model, it was applied to the 2011 Tohoku-oki earthquake in Japan and the results confirmed that the accuracy was improved compared to the existing passive and static model.

Mono-Vision Based Satellite Relative Navigation Using Active Contour Method (능동 윤곽 기법을 적용한 단일 영상 기반 인공위성 상대항법)

  • Kim, Sang-Hyeon;Choi, Han-Lim;Shim, Hyunchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.902-909
    • /
    • 2015
  • In this paper, monovision based relative navigation for a satellite proximity operation is studied. The chaser satellite only uses one camera sensor to observe the target satellite and conducts image tracking to obtain the target pose information. However, by using only mono-vision, it is hard to get the depth information which is related to the relative distance to the target. In order to resolve the well-known difficulty in computing the depth information with the use of a single camera, the active contour method is adopted for the image tracking process. The active contour method provides the size of target image, which can be utilized to indirectly calculate the relative distance between the chaser and the target. 3D virtual reality is used in order to model the space environment where two satellites make relative motion and produce the virtual camera images. The unscented Kalman filter is used for the chaser satellite to estimate the relative position of the target in the process of glideslope approaching. Closed-loop simulations are conducted to analyze the performance of the relative navigation with the active contour method.