• Title/Summary/Keyword: active mode

Search Result 1,114, Processing Time 0.053 seconds

Design and Operation of Self-Powered Arduino System for Solar Energy Harvesting (태양에너지 하베스팅을 위한 자가발전 아두이노 시스템의 설계 및 동작)

  • Yoon, Il Pyung;Myeong, Cho Seung;An, Ji Yong;Oh, Seok Jin;Min, Kyeong-Sik
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.483-487
    • /
    • 2022
  • In this paper, we design a self-powered Arduino system for solar energy harvesting and explain its operation. To perform the operation, the Arduino system senses the amount of solar energy that changes every moment and adjusts the ratio of the active mode and sleep mode operation time according to a given solar light intensity. If the intensity of sunlight is strong enough, the Arduino system can be continuously driven in active mode and receive sufficient power from sunlight. If not, the system can run in sleep mode to minimize power consumption. As a result, it can be seen that energy consumption can be minimized by reducing power consumption by up to 81.7% when using sleep mode compared to continuously driving active mode. Also, when the light intensity is at an intermediate level, the ratio between the active mode and the sleep mode is appropriately adjusted according to the light intensity to operate. The method of self-control of the operating time ratio of active mode and sleep mode, proposed in this paper, is thought to be helpful in energy-efficient operation of the self-powered systems for wearables and bio-health applications.

Fuzzy-sliding mode control of a full car semi-active suspension systems with MR dampers

  • Zheng, L.;Li, Y.N.;Baz, A.
    • Smart Structures and Systems
    • /
    • v.5 no.3
    • /
    • pp.261-277
    • /
    • 2009
  • A fuzzy-sliding mode controller is presented to control the dynamics of semi-active suspension systems of vehicles using magneto-rheological (MR) fluid dampers. A full car model is used to design and evaluate the performance of the proposed semi-active controlled suspension system. Four mixed mode MR dampers are designed, manufactured, and integrated with four independent sliding mode controllers. The siding mode controller is designed to decrease the energy consumption and maintain robustness. In order to overcome the chattering of the sliding mode controllers, a fuzzy logic control strategy is merged into the sliding mode controller. The proposed fuzzy-sliding mode controller is designed and fabricated. The performance of the semi-active suspensions is evaluated in both the time and frequency domains. The obtained results demonstrate that the proposed fuzzy-sliding mode controller can effectively suppress the vibration of vehicles and improve their ride comfort and handling stability. Furthermore, it is shown that the "chattering" of the sliding mode controller is smoothed when it is integrated with a fuzzy logic control strategy. Although the cost function of the fuzzy-sliding mode control is a slightly higher than that of a classical LQR controller, the control effectiveness and robustness are enhanced considerably.

Graphical Representation of the Instantaneous Compensation Power Flow for Single-Phase Active Power Filters

  • Jung, Young-Gook
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1380-1388
    • /
    • 2013
  • The conventional graphical representation of the instantaneous compensation power flow for single-phase active power filters(APFs) simply represents the active power flow and the reactive power flow which flowing between the power source and the active filter / the load. But, this method does not provide the information about the rectification mode and the compensation mode of APFs, especially, the loss for each mode was not considered at all. This is very important to understand the compensation operation characteristics of APFs. Therefore, this paper proposes the graphical representation of the instantaneous compensation power flow for single-phase APFs considering the instantaneous rectification mode and the instantaneous inversion mode. Three cases are verified in this paper - without compensation, with compensation of the active power 'p' and the fundamental reactive power 'q', and with compensation of only the distorted power 'h'. To ensure the validity of the proposed approach, PSIM simulation is achieved. As a result, we could confirm that the proposed approach was easy to explain the instantaneous compensation power flow considering the instantaneous rectification mode and the instantaneous inversion mode of APFs, also, Total Harmonic Distortion(THD)/Power Factor (P.F) and Fast Fourier Transform(FFT) analysis were compared for each case.

Realization of 3.3V active low-pass filter using improved continuous-time current-mode CMOS integrator (개선된 연속시간 전류모드 CMOS 적분기를 이용한 3.3V 능동 저역필터 구현)

  • 방준호;조성익;이성룡;권오신;신홍규
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.52-62
    • /
    • 1996
  • In this paper, a new continuous-time current-mode integrator as basic building block of the low-voltage analog current-mode active filters was proposed. Compared to the current-mode integrator which was proposed by Zele, the proposed current-mode integrator had higher unity gain frequency and output impedance in addition to lower power dissipation. And also, a current-mode third-order lowpass active filter was designed with the proposed current-mode integrator. The designed circuits were fabricated using the ORBIT's 1.2.mu.m double-poly double-metal CMOS n-well process. The experimental resutls of the active filter designed and fabricated for this research have shown that it has the performance of 44.5MHz cutoff frequency, 3.3mW power dissipation and the third-order active filter area was 0.12mm$^{2}$.

  • PDF

Suppression of high frequency leakage current in PWM Inverter-Fed Induction Motor Drives using Active Common Mode Voltage Damper (능동형 커먼 모드 전압 감쇄기를 통한 유도 전동기의 고주파 누설전류 억제)

  • 홍순일
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.186-190
    • /
    • 2000
  • This paper propose a "Active common-mode voltage damper circuit" that capable of a suppression of a common-mode voltage produced in the PWM VSI. The four level half-bridge PWM inverter circuit and common-mode transformer are incorporated into the "Active common-mode voltage damper" the design method of which is presented Effect of "Active common-mode voltage damper" in this paper verifies a propriety and effectiveness in 2.2[kW] induction motor drive using IGBT inverter. Experimental results show that "common-mode voltage damper" makes contributions to reducing a high frequency leakage current and common-mode voltage.leakage current and common-mode voltage.

  • PDF

The suppression of high frequency leakage current using a new active Common Mode Voltage Damper (새로운 능동형 커먼 모드 전압 감쇄기를 이용한 고주파 누설전류 억제)

  • Gu Jeong-Hoi;Bin Jae-Goo;Park Sung-Jun;Kim Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.151-154
    • /
    • 2001
  • This paper propose a new active common-mode voltage damper circuit that is capable of suppressing a common-mode voltage produced in the PWM VSI. The new active common mode voltage damper is consisted of a half-bridge inverter and a common mode transformer with a blocking capacitor. Principle of the active common mode damper is as follow; by applying the compensation voltage which has the same amplitude and opposite polarity to the PWM inverter system. So, common mode voltage and high frequency leakage current can be reduced. Simulated and experimental results show that common-mode voltage damper makes contributions to reducing a high frequency leakage current and common-mode voltage.

  • PDF

A Method to Determine the Droop Constant of DGs Considering the Configuration and Active Power Control Mode (분산전원의 구성 및 출력 제어 방법에 따른 Droop 계수 설정 방법)

  • Ahn, Seon-Ju;Park, Jin-Woo;Chung, Il-Yop;Moon, Seung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1954-1961
    • /
    • 2008
  • Microgrid usually consists of a cluster of distributed generators(DGs), energy storage systems and loads, and can operate in the grid-connected mode and the islanded mode. This paper presents detailed descriptions of two different options for controlling the active power of DGs in the microgrid. One is regulating the power injected by the unit to a desired amount(Unit output power control) and the other is to regulate the flow of active power in the feeder where the unit is installed to a constant(Feeder flow control). Frequency-droop characteristics are used to achieve good active power sharing when the microgrid operates in the islanded mode. The change in the frequency and the active power output of DGs are investigated according to the control mode and the configuration of DGs when the microgrid is disconnected from the main grid. From the analysis, this paper proposes a method to determine the droop constant of DGs operating in the feeder flow control mode. Simulation results using the PSCAD/EMTDC are presented to validate the approach, which shows good performance as opposed to the conventional one.

Active Suspension using Disturbance Accommodating Sliding Mode Control (능동 현가 장치의 외란 적응 슬라이딩 모드 제어)

  • 김종래;김진호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.275-280
    • /
    • 1999
  • This paper presents a disturbance accommodating sliding mode control for a quarter-car active suspension using an electro-hydraulic actuator. The electro-hydraulic actuator model is nonlinear and uncertain. The hardware constrains on the actuator prevent high gain in a sliding mode control, which deteriorates the force tracking performance. DAC(Disturbance Accommodating Control) is combined with the sliding mode control to improve the tracking performance. DAC observer estimates the pressure due to the actuator uncertainty. The additional control is designed to compensate the estimated pressure. Simulation results show the improved tracking performance with the Proposed control methods.

  • PDF

Sliding Mode Control with Disturbance Observer for An Active Magnetic Bearing System (자기베어링계에서 외란 관측기를 갖는 슬라이딩모드 제어)

  • 강민식
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.408-414
    • /
    • 2004
  • In this paper, a disturbance observer based sliding mode control is proposed to attenuate disturbance responses in an active magnetic bearing system, which is subject to base motion. An algorithm which decouples disturbance observation dynamics from sliding mode dynamics is suggested. This algorithm preserves the robustness of the sliding mode control and satisfies reachability condition in the presence of external disturbance and parameter uncertainties. Along with experimental results, it is shown that the proposed control is effective in disturbance rejection without any additive disturbance measurement.

Modified Sliding Mode Control of Structures Using MR Dampers (MR 감쇠기를 이용한 구조물의 변형된 슬라이딩 모드 제어)

  • 민경원;정진욱
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.243-250
    • /
    • 2002
  • Semi-active control devices have received significant attention in recent Years because they offer the adaptability of active-control devices without requiring the associated large power sources. Magnetorheological(MR) dampers are semiactive control devices that use MR fluids to produce controllable dampers. This paper applies sliding mode control method using target variation rate of Lyapunov function for the control of structures by use of MR dampers. The three-story building model under earthquake excitation is analyzed by installing a MR damper in the first-story. The performance of semi-active controllers designed by clipped-optimal algorithm and modified sliding mode control algorithm is compared to the performance of passive-type MR dampers. The results indicate that semi-active controllers achieve a greater reduction of responses than passive-type system and especially the controller by modified sliding mode control method shows a good applicability in the view of response control and control force.