• Title/Summary/Keyword: active fault

Search Result 270, Processing Time 0.034 seconds

Structural Evolution of the Northern Okinawa Trough (북부 오키나와트러프의 구조 발달)

  • Sunwoo Don
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.543-554
    • /
    • 2004
  • Analysis of multi-channel seismic reflection and well data serves to detail the structural evolution of the northern Okinawa Trough, southern offshore Korea. The overall structural style of the area is characterized by a series of half grabens and tilted fault blocks bounded by basement-involved listric normal faults. Most half grabens and tilted fault blocks developed in the direction of NNE-SSW, parallel to the axis of the Okinawa Trough. Orientation and distribution of the listric faults also suggest the development of transfer faults in NW-SE direction. The rifting phase of the northern Okinawa Trough have been established on the basis of structural and stratigraphic analyses of depositional sequences and their seismic expressions. Major phase of rifting probably started in the Late Miocene and the most active rifting occurred during the Early Pliocene. The rifting produced a series of half grabens and tilted fault blocks bounded by listric normal faults. It appears that the rifting activity has become weaker since the Late Pliocene, but the Pleistocene sediments faulted by listric faults bounding tilted fault blocks suggest that the rifting activity is probably still in progress.

Islanding detection algorithm for a micro-grid based on the active and reactive power in the time domain (시간영역에서의 유효/무효전력을 이용한 마이크로그리드의 단독운전의 판단 알고리즘)

  • Lee, Young-Gui;Lee, Hye-Won;Kim, Yeon-Hee;Zheng, Tai-Ying;Kang, Yong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.145-146
    • /
    • 2011
  • A micro-grid (MG) is usually interconnected to the main grid through the dedicated line. Immediately after the removal of the grid supply, the MG should be disconnected and remain disconnected until the main grid is re-energized. It should detect islanding condition as soon as it happens to adjust the setting of the protection relays in the MG. This paper proposes an islanding detection algorithm for the MG based on the active and reactive power delivered to the dedicated line in the time domain. The performance of the proposed algorithm is verified under islanding conditions and fault conditions using the PSCAD/EMTDC simulator. The results indicate that the proposed algorithm can discriminate the islanding conditions from the various fault conditions.

  • PDF

Anti-islanding Method by Harmonic Injection for Utility Interactive Inverter with Critical Load (중요부하를 갖는 계통연계형 인버터의 고조파주입에 의한 단독운전방지 기법)

  • Oh, Hyeong-Min;Choi, Se-Wan;Kim, Tae-Hee;Lee, Gi-Pung;Lee, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.315-321
    • /
    • 2012
  • The utility-interactive inverter with critical loads should supply continuous and stable voltage to critical loads even during the grid fault. The conventional control method which performs current control for grid-connected mode and voltage control for stand-alone mode undergoes the critical load voltage variation during grid fault. The critical load voltage may have large transient when the inverter performs mode transfer after the islanding detection. Recently, the indirect current control method which does not have the transient state during not only islanding detection but also the mode transfer has been proposed. However, since the voltage control is maintained even during the grid-connected mode it is difficult to detect the islanding. This paper proposes an active anti-islanding method suitable for the indirect current control method which does not have NDZ(Non-Detection Zone).

Enhanced Startup Diagnostics of LCL Filter for an Active Front-End Converter

  • Agrawal, Neeraj;John, Vinod
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1567-1576
    • /
    • 2018
  • The reliability of grid-connected inverters can be improved by algorithms capable of diagnosing faults in LCL filters. A fault diagnostic method during inverter startup is proposed. The proposed method can accurately generate and monitor information on the peak value and the location of the peak frequency component of the step response of a damped LCL filter. To identify faults, the proposed method compares the evaluated response with the response of a healthy higher-order damped LCL filter. The frequency components in the filter voltage response are first analytically obtained in closed form, which yields the expected trends for the filter faults. In the converter controller, the frequency components in the filter voltage response are computed using an appropriately designed fast Fourier transform and compared with healthy LCL response parameters using a finite state machine, which is used to sequence the proposed startup diagnostics. The performance of the proposed method is validated by comparing analytical results with the simulation and experimental results for a three-phase grid-connected inverter with a damped LCL filter.

Kinematic Interpretation for the Development of the Yeonghae Basin, Located at the Northeastern Part of the Yangsan Fault, Korea

  • Altaher, Zooelnon Abdelwahed;Park, Kiwoong;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.467-482
    • /
    • 2022
  • The Yeonghae basin is located at the northeastern part of the Yangsan fault (YSF; a potentially active fault). The study of the architecture of the Yeonghae basin is important to understand the activity of the Yangsan fault system (YSFS) as well as the basin formation mechanism and the activity of the YSFS. For this study, Digital Elevation Model (DEM) was used to highlight the marginal faults, and structural fieldwork was performed to understand the geometry of the intra-basinal structures and the nature of the bounding faults. DEM analysis reveals that the eastern margin is bounded by the northern extension of the YSF whereas the western margin is bounded by two curvilinear sub-parallel faults; Baekseokri fault (BSF) and Gakri fault (GF). The field data indicate that the YSF is striking in the N-S direction, steeply dipping to the east, and experienced both sinistral and dextral strike-slip movements. Both the BSF and GF are characterized dominantly by an oblique right-lateral strike-slip movement. The stress indicators show that the maximum horizontal compressional stress was in NNE to NE and NNW-SSE, which is consistent with right-lateral and left-lateral movements of the YSFS, respectively. The plotted structural data show that the NE-SW is the predominant direction of the structural elements. This indicates that the basin and marginal faults are mainly controlled by the right-lateral strike-slip movements of the YSFS. Based on the structural architecture of the Yeonghae basin, the study area represents a contractional zone rather than an extensional zone in the present time. We proposed two models to explain the opening and developing mechanism of the Yeonghae basin. The first model is that the basin developed as an extensional pull-apart basin during the left-lateral movement of the YSF, which has been reactivated by tectonic inversion. In the second model, the basin was developed as an extensional zone at a dilational quadrant of an old tip zone of the northern segment of the YSF during the right-lateral movement stage. Later on, the basin has undergone a shortening stage due to the closing of the East Sea. The second model is supported by the major trend of the collected structural data, indicating predominant right-lateral movement. This study enables us to classify the Yeonghae basin as an inverted strike-slip basin. Moreover, two opposite strike-slip movement senses along the eastern marginal fault indicate multiple deformation stages along the Yangsan fault system developed along the eastern margin of the Korean peninsula.

Islanding Detection for a Micro-Grid based on the Instantaneous Active and Reactive Powers in the Time Domain (시간영역에서 순시 유효/무효전력을 이용한 마이크로그리드의 단독운전 판단)

  • Lee, Young-Gui;Kim, Yeon-Hee;Zheng, Tai-Ying;Kim, Tae-Hyun;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.22-27
    • /
    • 2012
  • Correct and fast detection of a micro-grid (MG) islanding is essential to the MG since operation, control and protection of the MG depend on an operating mode i.e., an interconnected mode or an islanding mode. When islanding occurs, the frequency of the point of common coupling (PCC) is not the nominal frequency during the transient state owing to the frequency rise or drop of generators in the MG. Thus, the active and reactive power calculated by the frequency domain based method such as Fourier Transform might contain some errors. This paper proposes an islanding detection algorithm for the MG based on the instantaneous active and reactive powers delivered to the dedicated line in the time domain. During the islanding mode, the instantaneous active and reactive powers delivered to the dedicated line are constants, which depend on the voltage of the PCC and the impedance of the dedicated line. In this paper, the instantaneous active and reactive powers are calculated in the time domain and used to detect islanding. The performance of the proposed algorithm is verified under various scenarios including islanding conditions, fault conditions and load variation using the PSCAD/EMTDC simulator. The results indicate that the algorithm successfully detects islanding for the MG.

Noise identification on active circuits and reduction using MPM technique (능동회로에서의 노이즈 규명 및 MPM기법을 통한 저감)

  • Oh, K.S;Lee, J.B.;Ko, I.K.;Heo, H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3063-3065
    • /
    • 2005
  • In the raper, the noise involved on the active circuit is identified using correlation function. In order to identify the unknown noise source location, signals from each points on the system are detected and the location is identified by a concept calico Noise Source Surface. The fault diagnosis method is suggested for each element by identifying the noise source in active circuit using SVM. Experiment is conducted to confirm the validity of the proposed method. Also a method to reduce and control the noise in the system signal by using Matrix Pencil Method is introduced.

  • PDF

Islanding Prevention Method for Photovoltaic System by Harmonic Injection Synchronized with Exciting Current Harmonics of Pole Transformer

  • Yoshida, Yoshiaki;Fujiwara, Koji;Ishihara, Yoshiyuki;Suzuki, Hirokazu
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.331-338
    • /
    • 2014
  • When large penetration of the distributed generators (DGs) such as photovoltaic (PV) systems is growing up in grid system, it is important to quickly prevent islanding caused by power system fault to ensure electrical safety. We propose a novel active method for islanding prevention by harmonic injection synchronized with the exciting current harmonics of the pole transformer to avoid mutual interference between active signals. We confirm the validity of the proposed method by performing the basic tests of islanding by using a current source superimposed the harmonic active signal. Further, we carry out the simulation using PSCAD/EMTDC, and verify the fast islanding detection.

A Study of Active Hardware Redundancy Module Management for Brake-by-wire using In-vehicle-network (차량용 네트워크를 이용한 Brake-by-wire 시스템의 Active hardware redundancy 모듈 운영에 관한 연구)

  • Yoon, Jong-Woon;Kim, Ki-Eung;Kim, Tae-Yeol;Kim, Jae-Gu;Lee, Seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.111-111
    • /
    • 2000
  • The research of network system, being used to reduce automotive wiring harness, is reaching to the development of by-wire system. It is by-wire system that apply IVN(In-Vehicle-Network) to steering, braking system, and it has the advantage of mass-decreasing, easy to diagnose fault and so on. But until now, many developed device can't satisfied with reliability that system have ever had. So redundancy of each network module, i.e., It is only way to make backup module. This paper researches development of network module and redundancy management of backup module when error occurred for implementation of brake-by-wire system.

  • PDF