• Title/Summary/Keyword: active domain

Search Result 555, Processing Time 0.028 seconds

The Development of the Standards of Performance Assessment for an Affective Domain of Mathematics in High School (고등학교 수학의 정의적 영역에 대한 수행평가 기준 개발)

  • 이종연
    • School Mathematics
    • /
    • v.4 no.2
    • /
    • pp.193-204
    • /
    • 2002
  • Performance assessment has been introduced to school education as an alternative measure of the former educational assessment which put much emphasis on the result rather than the process of learning, memorization than pursuit of knowledge, and passive than active study. As for the subject of mathematics, the change of the assessment came to replace multiple choice tests with descriptive- and statement-type tests. This means animprovement on the testing system, focusing on the process of finding out the answer. The main focus, however, is still on the intellectual domain without paying due attention to the emotional domain of mathematics education. The previous studies on the assessment of emotional domain In mathematics have shown that there are stumbling blocks in the application of the assessment, such as the disputes on the reliability, objectivity, and fairness as well as the complicated procedure of applying the results to school records. The lack of the development and supply of the appropriate assessment tools have also been pointed out. Therefore, this study has been carried out with the intention of establishing an applicable standard of assessment on the emotional domain of high school matematics. As a result, detailed standards of performance assessment, which adopt oral examination, discussion, observation, and report have been developed. The problems which are likely to emerge In the course of the application of the newly developed assessment are under study as a continuing research project.

  • PDF

Structural Insight into Dihydrodipicolinate Reductase from Corybebacterium glutamicum for Lysine Biosynthesis

  • Sagong, Hye-Young;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.226-232
    • /
    • 2016
  • Dihydrodipicolinate reductase is an enzyme that converts dihydrodipicolinate to tetrahydrodipicolinate using an NAD(P)H cofactor in L-lysine biosynthesis. To increase the understanding of the molecular mechanisms of lysine biosynthesis, we determined the crystal structure of dihydrodipicolinate reductase from Corynebacterium glutamicum (CgDapB). CgDapB functions as a tetramer, and each protomer is composed of two domains, an Nterminal domain and a C-terminal domain. The N-terminal domain mainly contributes to nucleotide binding, whereas the C-terminal domain is involved in substrate binding. We elucidated the mode of cofactor binding to CgDapB by determining the crystal structure of the enzyme in complex with NADP+ and found that CgDapB utilizes both NADH and NADPH as cofactors. Moreover, we determined the substrate binding mode of the enzyme based on the coordination mode of two sulfate ions in our structure. Compared with Mycobacterium tuberculosis DapB in complex with its cofactor and inhibitor, we propose that the domain movement for active site constitution occurs when both cofactor and substrate bind to the enzyme.

Target detection method of the narrow-band continuous-wave active sonar based on basis-group beamspace-domain nonnegative matrix factorization for a reverberant environment (잔향 환경을 위한 기저집단 빔공간 비음수 행렬 분해 기반의 협대역 지속파 능동 소나 표적 탐지 기법)

  • Lee, Seokjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.290-301
    • /
    • 2019
  • The proposed algorithm deals with a detection problem of target echo for narrow-band continuous-wave active sonar in the underwater environment in this paper. In the active sonar systems, ping signal emitted for target detection produces a signal that consists of multiple reflections by many scatterers around, which is called reverberation. The proposed algorithm aims to detect the low-Doppler target echo in the reverberant environment. The proposed algorithm estimates the bearing, frequency, and temporal bases based on beamspace-domain multichannel nonnegative matrix factorization. In particular, the bases are divided into two basis groups - the reverberation group and the echo group, then the basis groups are estimated independently. In order to evaluate the proposed algorithm, a simulation with synthesized reverberation was performed. The results show that the proposed algorithm has enhanced performance than the conventional algorithms.

Implementation of Time-Domain Beamformer with Cummulative Processing in decomposed channel using Polynomial Interpolation (다항식 보간기법을 이용한 채널별 누적처리 시간영역 빔형성기 구현)

  • Lee, Jung-Hoon;Kim, Eui-Jun;Kwon, Dae-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.83-84
    • /
    • 2008
  • It is efficient to use the time-domain beamforming to operate the various pulse with the different pulse length, frequency, bandwidth in active sonar system. In this paper, we propose a time-domain beamformer with the cumulative processing in the decomposed channel using the polynomial interpolation to solve the problem of the computational cost, high transmission data rate, and the lack of internal memory.

  • PDF

Expression of an Active Adenylate Forming Domain of Peptide Synthetase (Peptide Synthetase의 활성 Adenylate 형성 Domain의 발현)

  • Kim, Yoen-Ok;Kim, Ki-Young;Lee, Seong;Lee, Young-Haeng;Yu, Byung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.67-71
    • /
    • 1996
  • The plasmid pK8 was constructed to verify the existence of an adenylate domain in peptide synthetase by using pGC12. 1.2 kb fragment, coding tyrocidine synthetase 1 (123 kDa) was deleted, and 79.6 kDa one was expressed in Escherichia coli XL1-blue. The truncated multienzyme activated phenylalanine and substrate analogues with comparable kinetics as the over expressed synthetase. ATP-[$^{32}P$]PPi exchange reaction was measured for the enzyme assay.

  • PDF

Partial Characterization of Soybean cDNA Encoding CTP: Phosphocholine Cytidylyltransferase

  • Sung Ho Cho
    • Journal of Plant Biology
    • /
    • v.38 no.4
    • /
    • pp.359-364
    • /
    • 1995
  • As the first step to elucidate the relationship between the structure and function of CTP:phosphocholine cytidylyltransferase (EC 2.7.7.15) in plants, the partial nucleotide sequence of soybean cytidylyltransferase cDNA was determined using a polymerase chain reaction (PCR). Degenerate oligonucleotide primers were synthesized from the conserved region revealed from the rat and yeast cytidylyltransferase DNA sequences. The catalytic domain region showed 78 and 76% homology with the rat and yeast amino acid sequences, respectivly. The hydropathy profile indicated that the C-terminal non-catalytic portion of the protein was very hydrophilic, and in the region between the catalytic domain and the C-terminal region, there was a large amphipathic $\alpha$-helical domain that was believed to bind the membrane surface in the active formation. There are 7 potential sites for phosphorylation by protein kinase C and 4 potential sites for phosphorylation by Ca2+/calmodulin kinase within the determined sequence.

  • PDF

1-D Active Noise Control Technique in Frequency Domain (주파수영역에서의 1차원 능동소음제어기법)

  • 김재권;이정권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.331-336
    • /
    • 1994
  • 본 논문에서는 음향궤환 문제해결을 위한 한 방법으로써, 넓은 주파수 영역에서 단일지향특성을 가질 수 있도록 주파수영역에서 음파분리를 하여, 하류측으로 전파되는 음파를 제어하는 새로운 방법을 제시한다.

  • PDF

Bi-functional Activities of Chimeric Lysozymes Constructed by Domain Swapping between Bacteriophage T7 and K11 Lysozymes

  • Alcantara, Ethel H.;Kim, Dong-Hee;Do, Su-Il;Lee, Sang-Soo
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.539-546
    • /
    • 2007
  • The lysozymes encoded by bacteriophage T7 and K11 are both bifunctional enzymes sharing an extensive sequence homology (75%). The constructions of chimeric lysozymes were carried out by swapping the N-terminal and C-terminal domains between phage T7 and K11 lysozymes. This technique generated two chimeras, T7K11-lysozyme (N-terminal T7 domain and C-terminal K11 domain) and K11T7-lysozyme (N-terminal K11 domain and C-terminal T7 domain), which are both enzymatically active. The amidase activity of T7K11-lysozyme is comparable with the parental enzymes while K11T7-lysozyme exhibits an activity that is approximately 45% greater than the wild-type lysozymes. Moreover, these chimeric constructs have optimum pH of 7.2-7.4 similar to the parental lysozymes but exhibit greater thermal stabilities. On the other hand, the chimeras inhibit transcription comparable with the parental lysozymes depending on the source of their N-terminals. Taken together, our results indicated that domain swapping technique localizes the N-terminal region as the domain responsible for the transcription inhibition specificity of the wild type T7 and K11 lysozymes. Furthermore, we were able to develop a simple and rapid purification scheme in purifying both the wild-type and chimeric lysozymes.

Characterization and Transcriptional Activity of a Vitamin D Receptor Ortholog in the Ascidian Halocynthia roretzi (멍게(Halocynthia roretzi) 비타민 D 수용체 상동체 동정 및 전사활성)

  • Lee, Jung Hwan;Sohn, Young Chang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.6
    • /
    • pp.913-919
    • /
    • 2015
  • In vertebrates, the vitamin D receptor (VDR), a member of the nuclear receptor superfamily, binds the biologically active ligand $1{\alpha},25-(OH)_2$-vitamin $D_3$ (1,25 $D_3$). Nearly all vertebrates, including Agnatha, possess a VDR with high ligand selectivity for 1,25 $D_3$ and related metabolites. Although a putative ancestral VDR gene is present in the genome of the chordate invertebrate Ciona intestinalis, the functional characteristics of marine invertebrate VDR are still obscure. To elucidate the ascidian Halocynthia roretzi VDR (HrVDR), we cloned full-length HrVDR cDNA and investigated the transcriptional activity of HrVDR in HEK293 cells. HrVDR consists of 1,680 nucleotides (559 amino acids [aa]), including a short N-terminal region (A/B domain; 26 aa), DNA-binding domain (C domain; 72 aa), hinge region (D domain; 272 aa), and C-terminal ligand-binding domain (E domain; 161 aa). The amino acid sequence identity of HrVDR was greatest to that of C. intestinalis VDR (56%). In the luciferase reporter assays, the transcriptional activity of HrVDR was not significantly increased by 1,25 $D_3$, whereas the farnesoid X receptor agonist GW4064 increased the transactivation of HrVDR. These results suggest the presence of a novel ligand for and a distinct ligand-binding domain in ascidian VDR.