• Title/Summary/Keyword: active center

Search Result 3,620, Processing Time 0.034 seconds

A Study on the Active Balancing for High-Speed Rotors (II): Control Stability and Application (고속 회전체의 능동 밸런싱에 관한 연구 (II): 제어 안정성과 응용)

  • Kim, Jong-Soo;Moon, Jong-Duk;Lee, Soo-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.147-153
    • /
    • 2002
  • In the preceding research, the active balancing device, which is an electro-magnetic type, has been developed and active balancing method using influence coefficient method is also proposed. The stability of active balancing control is studied in this paper. A stable condition for active balancing control is derived by estimating errors of influence coefficients. A gain scheduling control using influence coefficients of the reference model is proposed when dynamic characteristic of rotor system is changed. The stability of the balancing method is verified by experiments.

Influence of Semi-active Suspension on Running Safety of Vehicles

  • Liu, Hong-You;Yu, Da-Lian
    • International Journal of Railway
    • /
    • v.3 no.2
    • /
    • pp.68-72
    • /
    • 2010
  • Railway vehicles equipped with semi-active suspension system can improve the ride quality of car bodies. Semi-active suspension system is usually applied onto high speed train, and therefore higher running safety requirement is desirable. The influence of semi-active suspension system on safety of vehicles running on straight line and curve line is studied, and the influences of sky hook damping coefficient and system time-delay on operational safety of cars fitted with semiactive suspension system is analyzed. The results show that in vehicles equipped with semi-active suspension system, while the vibration of car body is decreased, the running safety of cars is not affected to any significant degree. As a result, the ride quality is much improved with negligible deterioration of the running safety of cars.

  • PDF

A Study on the Application and Design of Hydraulic Active Suspension System (유압식 능동 현가시스템의 설계 및 적용에 관한 연구)

  • Jang, Seong-Uk;Lee, Jin-Geol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.683-692
    • /
    • 2002
  • The most important parameter for hydraulic active suspension system is to sustain desirable vehicle maneuvering stability and ride comfort without increasing power consumption. The performance of hydraulic active suspension system depends on damping force of body damping valve and piston damping valve. Hydraulic actuator design and damping valve parameter selection are essential and basic procedure to design hydraulic system. This paper is on computer simulation with use of mathematical model that was delivered from dynamic characteristic of hydraulic actuator, as know basic damping characteristics of hydraulic active suspension system. The aim of this paper is to select the system parameter that affect mainly hydraulic active suspension, and identify the validity on the system parameter selection.

Active Compliance Control for the Rehabilitation Robot with Cable Driven Transmission (케이블 구동 메커니즘을 이용한 재활 로봇의 능동 컴플라이언스 제어)

  • Kang, Sang-Hoon;Chang, Pyung-Hun;Park, Hyung-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1823-1832
    • /
    • 2004
  • In this paper, we proposed a TDC based F/T sensorless active compliance control algorithm for a rehabilitation robot (KARES II). The preference of compliance of the disabled is presented by clinical testing at Korea National Rehabilitation Center with the disabled. The KARES II was designed to work 12 predefined tasks which are very essential for helping the disabled. Among the tasks, some contact tasks between the robot and the disabled exist. Therefore, TDC based F/T sensorless compliance control algorithm is developed for these tasks without additional cost. We verified the proposed algorithm with experiment. Also for the practical use, suitable compliance for contact tasks is chosen by clinical testing at Korea National Rehabilitation Center.

Evaluation of Critical Speed for Active Steering Bogie Prototype (능동형 시제 조향대차의 임계속도 평가)

  • Hur, Hyun Moo;Park, Joon-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.205-210
    • /
    • 2017
  • Critical speed analysis was conducted for a active steering bogie prototype, developed to improve the curving performance of railway vehicles. The critical speed for the design concept was about 169.2k m/h. To validate the analysis result, we performed a critical speed test for the prototype bogie using a roller-rig tester. The test results showed that the critical speed for the prototype bogie was about 165 km/h. From the analysis and test results, The critical speed for the prototype bogie was determined to be 165 km/h. Considering the maximum operating speed of the test vehicle is 100 km/h, the prototype bogie is considered stable.

Steady State Analysis for Power System of HSR with Active Transformer

  • Kim, Wook-Won;Kim, Hyung-Chul;Shin, Seung-Kwon;Kim, Jin-O
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.257-264
    • /
    • 2016
  • In this paper, new electric railway feeding system which has active transformer is modeled for evaluating the steady state analysis using PSCAD/EMTDC. Equivalent models including power supply, feeder, train and transformers are proposed for simplifying the model of the feeding system in high speed electric railway. In case study, simulation results applied to proposed model are compared with the conventional and new systems through the catenary voltage, three-phase voltage of PCC (Point of Common Coupling) and the efficiency of regenerative braking energy.

Design of an Omni-directional mobile Robot with 3 Caster Wheels

  • Kim, Wheekuk;Kim, Do-Hyung;Yi, Byung-Ju;Yang, Sung-Il;You, Bum-Jae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.210-216
    • /
    • 2001
  • In this paper, design of a 3-degree-of-freedom mobile robot with three caster wheels is performed. Initially, kinematic modeling and singularity analysis of the mobile robot is performed. It is found that the singularity can be avoided when the robot has more than two wheels on which two active joints are located. Optimal kinematic parameters of mobile robots with three active joint variables and with four active joint variables are obtained and compared with respect to kinematic isotropic index of the Jacobian matrix of the mobile robot which is functions of the wheel radius and the length of steering link.

  • PDF

Design of Broad Band Amplifier Using Feedback Technique

  • Kang, Tae-Shin;Rhee, Jin-Koo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.1
    • /
    • pp.42-46
    • /
    • 2003
  • In this paper, an MMIC broadband amplifier for wireless communication systems has been developed by using an active feedback method. This active feedback operates at much higher frequencies than a method by a spiral inductor feedback and its size is independent of the inductance value. The MMIC broadband amplifier was designed using a $0.5{\;}{\mutextrm{m}}$ MESFET library. The fabricated chip area was $1.4{\;}mm{\;}{\times}{\;}1.4{\;}mm. Measurement showed a gain of 18 dB with a gain flatness of ${\pm}3$ dB in a 1.5 GHz~3.5 GHz band. The maximum output power and the minimum noise figure were 14 dBm and 2.5 dB in the same band, respectively.

Quantum Theory of Amplified Total Internal Reflection by Evanescent Wave (에바네슨트파에 의해 증폭된 전반사의 양자이론)

  • Lee, Chang-Woo;Jaewoo Nho;Wonho Jhe
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.156-157
    • /
    • 2000
  • The amplification method using evanescent wave coupling has a long history and has been widely used as a new lasing method, especially, in the waveguide optics$^{(1)}$ . In particular, it has been observed experimentally that when the light wave propagating in a dielectric medium is totally reflected at the planar interface between the dielectric and a pumped active medium, the reflectance may be greater than unity, i.e., amplification is possible$^{(2)}$ . There were several attempts by other authors to explain this enhanced internal reflection (EIR) classically$^{(3)}$ . They commonly introduced a complex refractive index for the active medium with its imaginary part being negative, and this scheme was also used to describe an amplification process in a waveguide having active-cladding region$^{(4)}$ . However these theories are phenomenological, using macroscopic constants, and therefore a microscopic theory is needed to understand EIR in a fundamental level. (omitted)

  • PDF

Analytical Pinning-Voltage Model of a Pinned Photodiode in a CMOS Active Pixel Sensor

  • Lee, Sung-Sik;Nathan, Arokia;Lee, Myung-Lae;Choi, Chang-Auck
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.14-18
    • /
    • 2011
  • An analytical pinning-voltage model of a pinned photodiode has been proposed and derived. The pinning-voltage is calculated using doping profiles based on shallow- and exponential-junction approximations. Therefore, the derived pinning-voltage model is analytically expressed in terms of the process parameters of the implantation. Good agreement between the proposed model and simulated results has been obtained. Consequently, the proposed model can be used to predict the pinning-voltage and related performance of a pinned photodiode in a CMOS active pixel sensor.