• Title/Summary/Keyword: activation of plant defense responses

Search Result 24, Processing Time 0.025 seconds

The Plant-Stress Metabolites, Hexanoic Aacid and Melatonin, Are Potential "Vaccines" for Plant Health Promotion

  • Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.415-427
    • /
    • 2021
  • A plethora of compounds stimulate protective mechanisms in plants against microbial pathogens and abiotic stresses. Some defense activators are synthetic compounds and trigger responses only in certain protective pathways, such as activation of defenses under regulation by the plant regulator, salicylic acid (SA). This review discusses the potential of naturally occurring plant metabolites as primers for defense responses in the plant. The production of the metabolites, hexanoic acid and melatonin, in plants means they are consumed when plants are eaten as foods. Both metabolites prime stronger and more rapid activation of plant defense upon subsequent stress. Because these metabolites trigger protective measures in the plant they can be considered as "vaccines" to promote plant vigor. Hexanoic acid and melatonin instigate systemic changes in plant metabolism associated with both of the major defense pathways, those regulated by SA- and jasmonic acid (JA). These two pathways are well studied because of their induction by different microbial triggers: necrosis-causing microbial pathogens induce the SA pathway whereas colonization by beneficial microbes stimulates the JA pathway. The plant's responses to the two metabolites, however, are not identical with a major difference being a characterized growth response with melatonin but not hexanoic acid. As primers for plant defense, hexanoic acid and melatonin have the potential to be successfully integrated into vaccination-like strategies to protect plants against diseases and abiotic stresses that do not involve man-made chemicals.

Transgenic Rice Plants Expressing an Active Tobacco Mitogen-activated Protein Kinase Kinase Induce Multiple Defense Responses

  • Jeong, Jin-A;Yoo, Seung-Jin;Yang, Douck-Hee;Shin, Seo-Ho;Lee, Myung-Chul;Cho, Baik-Ho;Yang, Kwang-Yeol
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.375-383
    • /
    • 2008
  • It is well known that NtMEK2, a tobacco MAPK kinase, is the upstream kinase of both salicylic acid-induced protein kinase and wound-induced protein kinase. In addition, expression of $NtMEK2^{DD}$, a constitutively active mutant of NtMEK2, is known to induce multiple defense responses in tobacco. In this study, transgenic rice plants that contained an active or inactive mutant of NtMEK2 under the control of a steroid inducible promoter were generated and used to determine if a similar MAPK cascade is involved in disease resistance in rice. The expression of $NtMEK2^{DD}$ in transgenic rice plants resulted in HR-like cell death. The observed cell death was preceded by the activation of endogenous rice 48-kDa MBP kinase, which is also activated by Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice. In addition, prolonged activation of the MAPK induced the generation of hydrogen peroxide and up-regulated the expression of defense-related genes including the pathogenesis-related genes, peroxidases and glutathione S-transferases. These results demonstrate that NtMEK2 is functionally replaceable with rice MAPK kinase in inducing the activation of the downstream MAPK, which in turn induces multiple defense responses in rice.

AP2/EREBP Transcription Factors in Rice

  • Kim, Yun-Ju;Jung, Eui-Whan;Hwang, Seon-Hee;Go, Seong-Joo;Hwang, Duk-Ju
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.41-45
    • /
    • 2004
  • Plants have the ability to defend themselves against pathogens by activating a series of defense responses. SA is known to be a signal molecule in plant defense responses. Nevertheles, SA is not the only one signal mediating defense responses. In addition to SA, ethylene and jasmonic acid have also been known to mediate plant defense responses against pathogens. The activation of a series of plant defense responses is known to be through varieties of transcription factors. Specially AP2/EREBP transcription factors are involved in ethylene mediated defense signaling. In this review, recent progress on AP2/EREBP transcription factors in arabidopsis, tomato and tobacco and a few of AP2/ EREBP transcription factors in rice related to biotic stresses will be discussed.

Isolation of Defense-Related Genes from Nicotiana glutinosa Infected by Tobacco Mosaic Virus Using a Modified Differential Screening

  • Park, Kyung-Soon;Suh, Mi-Chung;Cheong, Jong-Joo;Park, Doil
    • The Plant Pathology Journal
    • /
    • v.15 no.5
    • /
    • pp.295-301
    • /
    • 1999
  • Many of plant defense responses are consequence of transcriptional activation of related genes. We have developed a modified differential screening procedure to isolate tobacco genes that are involved in the defense responses against TMV infection. A cDNA library was constructed from Nicotiana glutinosa leaves infected by TMV under temperature shift conditions. Each of plasmid DNA in the library was hybridized on a set of slot blots to a pool of cDNA probes prepared from either TMV-infected or mock-treated tobacco leaves. Among 900 plasmid DNAs, 81 clones exhibiting significantly enhanced or reduced level of hybridization to either probe were selected for nucleotide sequencing. The clones were listed into 61 genes considering redundancy between the sequences. The genes were identified to be defense-related genes including PR-genes and genes involved in primary or secondary metabolisms. This results supports the implication that plant defense process entails a major shift in total cellular metabolisms rather than activation of a limited number of defense-related genes. Expression patterns of a number of defense-related genes. Expression patterns of a number of selected genes were examined in northern blot analyses. It is notable that the clone 630 of unknown function exhibits expression pattern similar to those of previously known PR-genes. Experiments to elucidate the roles in defense mechanism of a couple of genes newly identified in this study are in progress.

  • PDF

Development of Integrated Pest Management Techniques Using Biomass for Organic Farming (I) (유기농업에서 무공해 생물자원을 이용한 병충해 종합방제 기술개발 (I) 키토산의 항균 및 병저항성관련 유전자 유도에 의한 토마토 역병 및 시들음병 억제효과)

  • 오상근;최도일;유승헌
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.278-285
    • /
    • 1998
  • Effects of chitosan on growth of tomato plant, and suppression of Fusaruim wilt caused by Fusarium oxysporum f. sp. lycopersici and late blight casued by Phytophthora infestans, were examined. Both late blight and fusarium wilt were suppressed by spray and irrigation of chitosan, respectively. Inhibition of mycelial growth was not greatly affected by molecular size of chitosan but, concentration dependent effects was observed. Ninty percent of P. infestans and 80% of F. oxysporum f. sp. lycopersici of mycelial growth was inhibited by 1,000 ppm of chitosan (MW 30,000~50,000) when amended in plate media. Induction of defense-related gene expression in plant by chitosan treatments were observed when chitosan treated tobacco and tomato RNA samples were hybridized with several defense-related genes as probes. The results revealed that $\beta$-1,3-glucanase and chitinase genes were strongly induced, while pathogenesis-related protein-1, 3-hydroxy-3-methylglutaryl coenzyme A reductase, anionic peroxidase, phenylalanine ammonia lyase genes were weakly induced by chitosan treatment. These results suggest that chitosan have dual effects on these host-pathogen interactions. Possible roles of chitosan in suppression of tomato diseases by inhibition of mycelial growth and activation of plant defense responses are discussed.

  • PDF

MtMKK5 inhibits nitrogen-fixing nodule development by enhancing defense signaling

  • Hojin Ryu
    • Journal of Plant Biotechnology
    • /
    • v.49 no.4
    • /
    • pp.300-306
    • /
    • 2022
  • The mitogen-activated protein kinase (MAPK) signaling cascade is essential for a wide range of cellular responses in plants, including defense responses, responses to abiotic stress, hormone signaling, and developmental processes. Recent investigations have shown that the stress, ethylene, and MAPK signaling pathways negatively affect the formation of nitrogen-fixing nodules by directly modulating the symbiotic signaling components. However, the molecular mechanisms underlying the defense responses mediated by MAPK signaling in the organogenesis of nitrogen-fixing nodules remain unclear. In the present study, I demonstrate that the Medicago truncatula mitogen-activated protein kinase kinase 5 (MtMKK5)-Medicago truncatula mitogen-activated protein kinase 3/6 (MtMPK3/6) signaling module, expressed specifically in the symbiotic nodules, promotes defense signaling, but not ethylene signaling pathways, thereby inhibiting nodule development in M. truncatula. U0126 treatment resulted in increased cell division in the nodule meristem zone due to the inhibition of MAPK signaling. The phosphorylated TEY motif in the activation domain of MtMPK3/6 was the target domain associated with specific interactions with MtMKK5. I have confirmed the physical interactions between M. truncatula nodule inception (MtNIN) and MtMPK3/6. In the presence of high expression levels of the defense-related genes FRK1 and WRKY29, MtMKK5a overexpression significantly enhanced the defense responses of Arabidopsis against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Overall, my data show that the negative regulation of symbiotic nitrogen-fixing nodule organogenesis by defense signaling pathways is mediated by the MtMKK5-MtMPK3/6 module.

NPR1 is Instrumental in Priming for the Enhanced flg22-induced MPK3 and MPK6 Activation

  • Yi, So Young;Min, Sung Ran;Kwon, Suk-Yoon
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.192-194
    • /
    • 2015
  • Pathogen-associated molecular patterns (PAMPs) activate mitogen-activated protein kinases (MAPKs), essential components of plant defense signaling. Salicylic acid (SA) is also central to plant resistance responses, but its specific role in regulation of MAPK activation is not completely defined. We have investigated the role of SA in PAMP-triggered MAPKs pathways in Arabidopsis SA-related mutants, specifically in the flg22-triggered activation of MPK3 and MPK6. cim6, sid2, and npr1 mutants exhibited wild-type-like flg22-triggered MAPKs activation, suggesting that impairment of SA signaling has no effect on the flg22-triggered MAPKs activation. Pretreatment with low concentrations of SA enhanced flg22-induced MPK3 and MPK6 activation in all seedlings except npr1, indicating that NPR1 is involved in SA-mediated priming that enhanced flg22-induced MAPKs activation.

DNA Damage Triggers the Activation of Immune Response to Viral Pathogens via Salicylic Acid in Plants

  • Hwi-Won Jeong;Tae Ho Ryu;Hyo-Jeong Lee;Kook-Hyung Kim;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.449-465
    • /
    • 2023
  • Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense-and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.

The necrotroph Botrytis cinerea promotes disease development in Panax ginseng by manipulating plant defense signals and antifungal metabolites degradation

  • Chen, Huchen;Zhang, Shuhan;He, Shengnan;A, Runa;Wang, Mingyang;Liu, Shouan
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.790-800
    • /
    • 2022
  • Background: Panax ginseng Meyer is one of the most valuable medicinal plants which is enriched in anti-microbe secondary metabolites and widely used in traditional medicine. Botrytis cinerea is a necrotrophic fungus that causes gray mold disease in a broad range of hosts. B. cinerea could overcome the ginseng defense and cause serious leaf and root diseases with unknown mechanism. Methods: We conducted simultaneous transcriptomic and metabolomic analysis of the host to investigate the defense response of ginseng affected by B. cinerea. The gene deletion and replacement were then performed to study the pathogenic gene in B. cinerea during ginseng - fungi interaction. Results: Upon B. cinerea infection, ginseng defense responses were switched from the activation to repression, thus the expression of many defense genes decreased and the biosynthesis of antifungal metabolites were reduced. Particularly, ginseng metabolites like kaempferol, quercetin and luteolin which could inhibit fungi growth were decreased after B. cinerea infection. B. cinerea quercetin dioxygenase (Qdo) involved in catalyzing flavonoids degradation and ∆BcQdo mutants showed increased substrates accumulation and reduced disease development. Conclusion: This work indicates the flavonoids play a role in ginseng defense and BcQdo involves in B. cinerea virulence towards the P. ginseng. B. cinerea promotes disease development in ginseng by suppressing of defense related genes expression and reduction of antifungal metabolites biosynthesis.

CaWRKY2, a Chili Pepper Transcription Factor, Is Rapidly Induced by Incompatible Plant Pathogens

  • Oh, Sang-Keun;Yi, So Young;Yu, Seung Hun;Moon, Jae Sun;Park, Jeong Mee;Choi, Doil
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.58-64
    • /
    • 2006
  • WRKY family proteins are a class of plant-specific transcription factors involved in stress response signaling pathways. In this study a gene encoding a putative WRKY protein was isolated from a pepper EST database (http://genepool.kribb.re.kr). The cDNA, named Capsicum annuum WRKY2 (CaWRKY2), encodes a putative polypeptide of 548 amino acids, containing two WRKY domains with zinc finger motifs and two potential nuclear localization signals. Northern blot analyses showed that CaWRKY2 mRNA was preferentially induced during incompatible interactions of pepper plants with PMMoV, Pseudomonas syringae pv. syringae 61, and Xanthomonas axonopodis pv. vesicatoria race 3. Furthermore, CaWRKY2 transcripts were strongly induced by wounding and ethephon treatment, whereas only moderate expression was detected following treatment with salicylic acid and jasmonic acid. CaWRKY2 was translocated to the nucleus when a CaWRKY2-smGFP fusion construct was expressed in onion epidermal cells. CaWRKY2 also had transcriptional activation activity in yeast. Taken together our data suggest that CaWRKY2 is a pathogen-inducible transcription factor that may have a role in early defense responses to biotic and abiotic stresses.