DOI QR코드

DOI QR Code

AP2/EREBP Transcription Factors in Rice

  • Kim, Yun-Ju (Molecular Physiology Division, National Institute of Agricultural Biotechnology (NIAB), Rural Development Administration) ;
  • Jung, Eui-Whan (Molecular Physiology Division, National Institute of Agricultural Biotechnology (NIAB), Rural Development Administration) ;
  • Hwang, Seon-Hee (Molecular Physiology Division, National Institute of Agricultural Biotechnology (NIAB), Rural Development Administration, Dept. of Microbiology, Kangwon Univeristy) ;
  • Go, Seong-Joo (Molecular Physiology Division, National Institute of Agricultural Biotechnology (NIAB), Rural Development Administration) ;
  • Hwang, Duk-Ju (Molecular Physiology Division, National Institute of Agricultural Biotechnology (NIAB), Rural Development Administration)
  • Published : 2004.03.01

Abstract

Plants have the ability to defend themselves against pathogens by activating a series of defense responses. SA is known to be a signal molecule in plant defense responses. Nevertheles, SA is not the only one signal mediating defense responses. In addition to SA, ethylene and jasmonic acid have also been known to mediate plant defense responses against pathogens. The activation of a series of plant defense responses is known to be through varieties of transcription factors. Specially AP2/EREBP transcription factors are involved in ethylene mediated defense signaling. In this review, recent progress on AP2/EREBP transcription factors in arabidopsis, tomato and tobacco and a few of AP2/ EREBP transcription factors in rice related to biotic stresses will be discussed.

Keywords

References

  1. Allen, M. D., Yamasaki, K., Ohme-Takagi, M., Tateno, M. and Suzuki, M. 1998. A novel mode of DNA recognition by a beta- sheet revealed by the solution structure of the GCC-box binding domain domain in complex with DNA. EMBO J. 17:5485-5496
  2. Buttner, M. and Singh, K. B. 1997. Arabidopsis thaliana ethylene responsive element binding protein (AtEBP), an ethylene inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc. Natl. Acad. Sci. USA 94:5961-5966 https://doi.org/10.1073/pnas.94.11.5961
  3. Cheong, Y. H., Moon, B. C., Kim, J. K., Kim, C. Y., Kim, M. C., Kim, I. H., Park, C. Y., Kim, J. C, Park, B. O., Koo, S. C, Yoon, H. W., Chung, W. S., Lim, C. O., Lee, S. Y. and Cho, M. J. 2003. MWMKl, a rice mitigen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by the activation of a transcription factor. Plantphysiol. 132: 1961-1972
  4. Coupe, S. A. and Deikman, J. 1997. Plant J. 11: 1207-1218 https://doi.org/10.1046/j.1365-313X.1997.11061207.x
  5. Deikrnan, J. 1997. Physiol. Plant. 100:561-566 https://doi.org/10.1111/j.1399-3054.1997.tb03061.x
  6. Elliott, R. C, Betzner, A. S., Huttner, E., Oakes, M. P., Tucker, W. O. J., Genentes, D., Perez, P. and Smyth, D. R. 1996. AlNTEGUMENTA, an APETALA2-1ike gene of arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8: 155-168 https://doi.org/10.1105/tpc.8.2.155
  7. Finkelstein, R. R., Wang, M. L., Lynch, T. J., Rao, S. and Goodman, H. M. 1998. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein. Plant Cell 10: 1043-1054 https://doi.org/10.1105/tpc.10.6.1043
  8. Fujimoto, S. Y., Ohta, M., Usui, A., Shinshi, H. and Ohme-Takagi, M. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC boxmediated gene expression. Plant Cell 12:393-404 https://doi.org/10.1105/tpc.12.3.393
  9. Hanna-Rose, W. and Hansen, U. 1996. Active repression mechanisms of eukaryotic transcription repressors. Trends Genet. 12:229-234 https://doi.org/10.1016/0168-9525(96)10022-6
  10. Hao, D., Ohme-Takagi, M. and Sarai, A. 1998. Unique mode of GCC box recognition by the DNA-binding domain of ethylene responsive element-binding factor (ERF domain) in plant J. BioI. Chem. 273:26857-26861 https://doi.org/10.1074/jbc.273.41.26857
  11. Jofuku, K. D., den Boer, B. G. W., Van Montague, M. and Okamuro, J. K. 1994. Control of arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211-1225 https://doi.org/10.1105/tpc.6.9.1211
  12. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K .1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391-1406 https://doi.org/10.1105/tpc.10.8.1391
  13. Menke, F. L., Champion, A., Kijne, J. W. and Memelink, J. 1999. A novel jasmonate-and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate-and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J. 16:4455-4463
  14. Moose, S. P. and Sisco, P. H. 1996. Glossy 15, an APETALA2like gene from maize that regulate leaf epidermal cell identity. Genes Dev. 10:3018-3027 https://doi.org/10.1101/gad.10.23.3018
  15. Ohme-Takagi, M., Suzuki, K. and Shinshi, H. 2000. Regulation of ethylene-induced transcription of defense genes. Plant Cell Physiol. 41: 1187-1192 https://doi.org/10.1093/pcp/pcd057
  16. Ohme-Takagi, M. and Shinshi, H. 1995. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element Plant Cell 7: 173-182 https://doi.org/10.1105/tpc.7.2.173
  17. Ohta, M., Ohme-Takagi, M. and Shinshi, H. 2000. Three ethylene- responsive transcription factors in tobacco with distinct transactivation functions. Plant J. 22:29-38 https://doi.org/10.1046/j.1365-313x.2000.00709.x
  18. Park, J. M., Park, C-J., Lee, S.-B., Ham, B.-K, Shin, R. and Paek, K. H. 2001. Overexpression of the tobacco Tsi gene encoding an EREBP/AP2-type trnscription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035-1046 https://doi.org/10.1105/tpc.13.5.1035
  19. Riechmann, J. L. et al. 2000. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science 290:2105-2110 https://doi.org/10.1126/science.290.5499.2105
  20. Shinshi, H., Usami, S. and Ohme-Takagi, M. 1995. Plant Mol. BioI. 27:923-932 https://doi.org/10.1007/BF00037020
  21. Solano, R., Stepanova, A., Chao, Q. and Ecker, J. R. 1998. Nuclear events in ethylene signaling: A transcriptional cascade mediated by ETHYLENE-lNSENSITIVE3 and ETHYLENE- RESPONSE-FACTOR. Genes Dev. 12:3703-3714 https://doi.org/10.1101/gad.12.23.3703
  22. Stockinger, E. J., Gilmour, S. J. and Thomashow, M. F. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94: 1035-1040 https://doi.org/10.1073/pnas.94.3.1035
  23. Suzuki, K, Suzuki, N., Ohme-Takagi, M. and Shinshi, H. 1998. Immediate early induction of mRNAs for ethylene-responsive transcription factors in tobacco leaf strips after cutting. Plant J.15:657-665 https://doi.org/10.1046/j.1365-313x.1998.00243.x
  24. Wilson, K., Long, D., Swinburne, J. and Coupland, G. 1996. A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8:659-671 https://doi.org/10.1105/tpc.8.4.659
  25. Yamamoto, S., Suzuki, K. and Shinshi, H. 1999. Elicitor-responsive, ethylene-independent activation of GCC box-mediated transcription that is regulated by both protein phosrylation and dephosrylation in cultured tobacco cells. Plant J. 20:571-579 https://doi.org/10.1046/j.1365-313X.1999.00634.x
  26. Yang, H.-J., Chen, L., Xing Y.-Y., Wang, Z.-Y., Zhang, J.-L. and Hong, M.-M. 2002. The OsEBP-89 gene of rice encodes a putative EREBP transcription factor and is temporallyexpressed in developing endosperm and intercalary meristem. Plant Mol. BioI. 50:379-391 https://doi.org/10.1023/A:1019859612791
  27. Zhou, J., Tang, X. and Martin, G. B. 1997. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J. 16:3207-3218 https://doi.org/10.1093/emboj/16.11.3207