• Title/Summary/Keyword: activation of oocytes

Search Result 243, Processing Time 0.027 seconds

Study on the Developmental Rate of In Vitro Cultured Cats Oocytes Recovered from Ovaries Collected at Different Stages of the Reproductive Cycle (번식주기의 단계별로 회수한 고양이 난자의 체외수정과 체외발생에 관한 연구)

  • 박상훈;이명헌;김무강;김상근
    • Journal of Embryo Transfer
    • /
    • v.18 no.2
    • /
    • pp.157-161
    • /
    • 2003
  • The study was carried out to investigate the effects of morphology, reproductive cycle, incubation time and activation of oocytes in vitro maturation of cats oocytes and development of IVM/IVF embryos. The results were summarized as follows : 1. The fertilization and developmental rate of fresh and salts-stored oocytes with and whithout cumulus cells were 65.7%, 17.1% and 28.6%, 8.6% and 57.1%, 13.3%, 23.3%, 3.3%, respectively. The rate of oocytes with cumulus cells(13.3%∼65.7%) was higher than that of denuded oocytes(3.3%∼28.6%). 2. The fertilization and developmental rate of oocytes recovered from ovaries collected at different stages of the reproductive cycle were 68.9%, 44.4%, 48.9% and 17.8%, 8.9%, 12.8%, respectively. 3. The fertilization and developmental rate of oocytes in vitro cultured at different time of incubation(24, 36 and 48 h) were 66.7%, 46.7%, 48.9% and 17.8%, 11.1%, 8.5%, respectively. respectively. The rate of oocytes incubated 24 h(66.7%) was higher than that oocytes incubated 36 and 48 h(46.7%∼48.9%). 4. The fertilization and developmental rate of oocytes treated activation and non-activation oocytes were 57.4%, 31.4% and 22.9%, 11.4%, respectively. The rate of oocytes treated activation was higher than that oocyte treat non-activation.

Parthenogenetic Activation and Development of Freshly Matured Bovine IVM Oocytes (체외성숙 직후 소 난포란의 단위발생과 체외발육능)

  • 정희태;임석기;오세훈;박춘근;양부근;김정익
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.1
    • /
    • pp.71-78
    • /
    • 1997
  • This study was conducted to investigate the activation condition of freshly matured bovine IVM oocytes for use as a cytoplasmic recipient in nuclear transfer. Bovine oocytes matured in vitro for 22-24 h were treated with various activation conditions. In Experiment 1 in vitro matured oocytes were treated with electric stimuIus (ES; 2 pulses of 1.25 kV/cm for 70 ${\mu}{\textrm{s}}$ec, each pulse 1 sec apart), ethanol (ET; 7%, 5min) , Ca$^2+$-ionophore(A23187; 10$\mu\textrm{g}$/ml, 5min) and cycloheximide(CH; 10$\mu\textrm{g}$/ml, 6 h). Activation rates were similar in treatments with ES, ET and A23187(48.8~54.3%), however, significantly reduced with CH treatment(15.9%, P

  • PDF

Effects of BMI-1026, A Potent CDK Inhibitor, on Murine Oocyte Maturation and Metaphase II Arrest

  • Choi, Tae-Saeng
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.71-76
    • /
    • 2007
  • Previous studies have shown that BMI-1026 is a potent inhibitor of the cyclin-dependent kinases (cdk). In cell culture, the compound also arrests G2/M strongly and G1/S and S weakly. Two key kinases, cdk1 (p34cdc2 kinase) and mitogen-activated protein (MAP) kinase (erk1 and 2), perform crucial roles during oocyte maturation and, later, metaphase II (MII) arrest. In mammalian oocytes, both kinases are activated gradually around the time of germinal vesicle breakdown (GVBD) and maintain high activity in eggs arrested at metaphase II. In this study, we examined the effects of BMI-1026 on GVBD and MII arrest in mouse oocytes. BMI-1026 inhibited GVBD of immature oocytes and activated MII-arrested oocytes in a concentration-dependent manner, with more than 90% of oocytes exhibiting GVBD inhibition and MII activation at 100 nM This is approximately 500$\sim$1,000 times more potent than the activity reported for the cdk inhibitors roscovitine (${\sim}50{\mu}M$) and butyrolactone (${\sim}100{\mu}M$). Based on the results of previous in vitro kinase assays, we expected BMI-1026 to inhibit only cdk1 activation in oocytes and eggs, not MAP kinase. However, in our cell-based system, it inhibited the activity of both kinases. We also found that the effect of BMI-1026 is reversible. Our results suggest that BMI-1026 inhibits GVBD and activates MII-arrested oocytes efficiently and reversibly and that it also inhibits both cdk1/histone HI kinase and MAP kinase in mouse oocytes.

The Suppression of Maturational Competence by Streptomycin during In vitro Maturation of Goat Follicular Oocytes

  • Kang, Jae Ku;Chang, Suk Min;Naruse, Kenji;Han, Jeung Whan;Park, Chang Sik;Jin, Dong Il
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.8
    • /
    • pp.1076-1079
    • /
    • 2004
  • Antibiotics are common additives in culture media during in vitro embryo development, but their effects on oocyte maturation in vitro have not been tested. The effects of penicillin, streptomycin and gentamicin on the maturational competence and subsequent development potential of goat follicular oocytes were examined after parthenogenetic activation in vitro. Maturation rates at 24 h after in vitro maturation, and parthenogenetic development at 48 h after activation, were evaluated by observing the protruding first polar body and the 4 cell stage cleavage, respectively. When streptomycin was present in the maturation medium, the percentages of matured oocytes 24 h after activation were significantly (p<0.01) lower than those from the other groups (42.5-45.7% vs. 69.1-73.8%). Penicillin and gentamicin treatment did not affect the maturation rates or the percentages reaching the 4 cell stage 48 h after activation. There was no significant difference in cleavage rates among the different antibiotic treatments 48 h after activation. Therefore, streptomycin suppresses the in vitro maturation of immature goat oocytes, but does not influence their subsequent development.

Effect of $\textrm{Ca}^{2+}$ Concentration on Electric Activation of In Vitro Matured Oocytes of Korean Native Cattle ($\textrm{Ca}^{2+}$ 씨오투 농도가 체외성숙 유래 한우 난자의 전기적 활성화에 미치는 영향)

  • 송길영;이은송;이병천;황우석
    • Journal of Embryo Transfer
    • /
    • v.11 no.3
    • /
    • pp.259-269
    • /
    • 1996
  • The present study was undertaken to examine the critical effect of $Ca^2$+ concentration on electrostimulation and post-electrostimulation media for electric activation of in vitro matured oocytes of Korean Native Cattle. Oocytes collected from slaughterhouse ovaries were matured in TCM 199 containing FSH, estradiol-17$\beta$ and FBS with granulosa cell monolayer for 24 hours and denuded with hyaluronidase. And then cumulus-free oocytes were submitted to a DC field of 1.0 kV/cm for 60 $\mu$sec in electroporation media(0.28 M mannito' and PBS) with different $Ca^2$+ concentations (0.00, 0.05, 0.10 and 0.15 mM). Stimulated oocytes were stained and examined for pronuclear formation after incuhation in SOF for 12 hours. The rates of pronuclear formation in hovine oocytes electrically stimulated in 0.28 M mannitol with 0.05, 0.10 and 0.15 mM $Ca^2$+(60.3, 82.2 and 75.0%) were significantly higher than without $Ca^2$+(6.3%) at 12 hours after an electric pulse(p<0.005). The activation rates of Korean Native Cattle oocytes stimulated in PBS supplemented with 0.05, 0.10 and 0.15 mM $Ca^2$+(71.0, 75.8 and 75.4%) were significantly higher than without $Ca^2$+(23.5%) after post-stimulation incubation(p<0.005). After incubation of oocytes in SOF with and without $Ca^2$+ following electric stimulation in 0.28 M mannitol with 0.10 mM $Ca^2$+, the rates of pronuclear formation of bovine oocytes in $Ca^2$+-free SOF(85.7%) was significantly higher than in SOF with 1.71 mM $Ca^2$+(62.5%, p<0.05). When oocytes were stimulated in two electrostimulation media supplemented with $Ca^2$+ and incubated in $Ca^2$+-free SOF, there were no significant differences in the rates of pronuclear formation hetween 0.28 M mannitol and PBS. These results indicate that a single electric pulse could induce activation of Korea Native Cattle oocytes in 0.28 M mannitol and PBS supplemented with $Ca^2$+. Furthermore, to improve the activation rates, it was hetter that stimulated oocytes were incubated in $Ca^2$+-free SOF after electric stimulation than in SOF with $Ca^2$+.

  • PDF

Effect of lonomycin and 6-Dimethylaminopurine on Oocyte Activation and Production of Rabbit Nuclear Transplant Embryos (Ionomycin과 6-Dimethylaminopurine이 토끼의 난자 활성화와 핵이식배 생산효율에 미치는 영향)

  • 하란조;강다원;최창용;윤희준;강태영;최상용;이효종;박충생
    • Journal of Embryo Transfer
    • /
    • v.13 no.1
    • /
    • pp.11-19
    • /
    • 1998
  • This study was to determine the effect of ionomycin and 6-dimethylaminopurine (6-DMAP) and/or elcetrical stimulation on the oocyte activation and production of rabbit nuclear transplant embryos. The oocytes were collected from the oviduct of superovulated rabbits at 14 h post hCG injection and cultured in TCM-199 containing 10% FBS until 19 h post hCG injection. To determine the optimum concentration and exposure time of 6-DMAP, some oocytes were activated with 5 $\mu$M ionomycin for 5 min and then in 2.0 mM 6-DMAP for 0.5 to 3.0 h, or in 1.0 to 3.0 mM 6-DMAP for 2.0 h. Other control oocytes were stimulated electrically(3X, 1.25 kV/cm, 60 $\mu$sec) in 0.3 M mannitol solution supplemented with 100 $\mu$M CaCl$_2$ and MgCl$_2$. The nuclear donor embryos of 8-cell stage were synchronized to G$_1$ phase of 16-cell stage, and the recipient cytoplasms were obtained from removal of the first polar body and a portion of membrane bound cytoplasm of the oocytes collected at 15 h post hCG injection. A separated blastomere was injected into the perivitelline space of the enucleated oocytes. The oocytes injected with nucleus were cultured until 19 h post hCG and then electrofused and activated by electrical stimulation with or without ionomycin and 6-DMAP. These nuclear transplant embryos were cultured in TCM-199 containing 10% FBS in 39˚C, 5% CO2 incubator for 120 h. For the oncytes activated parthenogenetically with electrical stimulation with or with-out ionomycin and the various concentration of exposure time of 6-DMAP, the highest cleavage(92.3%) and development to blastocyst stage(41.0%) were resulted from the oocytes activated by ionomycin and 2.0 mM 6-DMAP for 2.0 h, which were found to be significantly(P<0.05) higher than the cleavage(45.2%) and developement to blastocyst stage(14.3%) from the oocytes activated with electrical stimulation. The significantly(P<0.05) more oocytes(71.4%) developed to 4 cell stage at 24 h post activation by ionomycin and 6-DMAP than those by electrical stimulation(18.9%). For the nuclear transplant embryos, the cleavage rate was similarly high in oocyte activation by electrical stimulation with(79.4%) or without ionomycin and 6-DMAP(70.5%). However, the embryo development to blastocyst stage was significantly(P<0.05) higher in oocyte activation by electrical stimulation with ionomycin and 6-DMAP(44.4%) than by electrical stimulation only(25.0%). The significantly(P<0.05) more nuclear transplant embryos(45.6%) developed to 4 cell stage at 18 h post activation by electrical stimulation with ionomycin and 6-DMAP than those by electrical stimulation only(10.6%). These results indicated that the supplemental oocyte activation by ionomycin and 6-DMAP with electrical stimulation enhanced and accelerated the preimplanted in vitro development of the rabbit nuclear transplant embryos.

  • PDF

Effect of Electric Stimulation on Parthenogenesis of In Vitro Matured Oocytes from Korean Native Cows (한우 체외성숙란의 단위발생에 대한 전기자극의 효과)

  • 노규진;공일근;곽대오;이효정;최상용;박충생
    • Journal of Embryo Transfer
    • /
    • v.9 no.2
    • /
    • pp.145-152
    • /
    • 1994
  • The suitable electric stimulation is essential for activation and fusion of oocytes before or after nuclear transplantation The present study was undertaken to determine the optirnal condition for the parthenogenetic activation of in vitro rnatured(IVM) bovine oocytes by electric stimulation. Different direct current(DC) electric voltage of 1.0, 1.5 and 2.0 kV/cm and pulse duration of 30, 60 and 120 $\mu$sec were applied to the JVM nocytes in 0.3 M mannitol solution containing each 100 $\mu$M CaCl$_2$ and MgCl$_2$. IVM occytes at 24, 28 and 32 hours Post-maturation(hpm) were also electrically stimulated at 1.5 kV /cm, for 60 $\mu$ sec. The stimulated nocytes were then co-cultured in TCM-199 solution containing 10% fetal calf serum with bovine oviductal epithelial cells for 7~9 days in a 5% $CO_2$ incubator at 39$^{\circ}C$ ~ Their activation and in vitro development to morula and blastocyst were assessed under an inverted microscope. The higher activation rates 62.8 and 63.4% and in vitro de- velopment rates to morula and blastocyst 5.1 and 10.9% were shown in the oocytes stimulated at the voltage of 1.0 and 1.5 kV/cm than 2.0 kV/cm, respectively. No signifi- cantly(P<0.05) different activation rate was shown in JVM oocytes stimulated for 30, 60 and 120 $\mu$sec, but developmental rates to morula and blastocyst was significantly(P<0.05) higher in the oocytes stimulated for 30 $\mu$sec(6~3%) and 60 $\mu$sec(10~0%) than 120 $\mu$sec(0~ 0%). The aged oocytes at 28 and 30 hpm showed significantly(P<0.05) higher activation rates(72~7 and 79.7%) than the oocytes at 24 hpm(50~9%)~ Also, their developmental rates to morula and blastocyst were significantly(P<0.05) higher in the nocytes at 28(14.3%) and 32 hpm(15.9%) than 24 hpm(3.6%). From these results, it can be suggested that the optimal electric stimulation for IVM bovine occytes is a DC voltage between 1.0 and 1.5 kV/cm, pulse duration of 30 or 60 $\mu$sec, and the optimal age of IVM oocytes for electric activation is at 32 hpm.

  • PDF

Effects of Collection Time, Culture Time and Activation Treatment of Canine Oocytes on the IVM Rates

  • Lee, B.K.;Kim, S.K.
    • Journal of Embryo Transfer
    • /
    • v.22 no.4
    • /
    • pp.219-222
    • /
    • 2007
  • These study was carried out to investigate the effects of the collection time, culture time and activation of canine oocytes on in vitro maturation rates. The activated oocytes were cultured in 10% FCS+TCM-199 media containing hormonal supplements (10 IU/ml HCG, 10 IU/ml PMSG, 10 ug/ml gonadotropin) at 5% $CO_2$, 95% air, $38^{\circ}C$. 1. IVM rate of in vitro cultured cumulus-attached oocytes recovered from ovaries that collected at follicular and luteal stages of the reproductive cycles were 11.4% and 5.7%, respectively. IVM rate of oocytes recovered from ovaries that collected at follicular stages of the reproductive cycles was significantly higher than that of luteal stage (p<0.05). 2. When IVM was carried out at different periods of 40, 48, and 70 hrs, the IVM rates of oocytes matured in vitro were 2.9%, 8.6%, 5.7%, respectively. These results indicate that the IVM time between $48{\sim}70$ hrs gives the highest maturation rate for the oocytes matured at the different stages. 3. IVM rate of oocytes matured in vitro for 10 hrs after single and combined activation treatment by ET, IP and CH and Ca+DMAP, CH+DMAP, ET+CH were $11.5{\pm}1.2%,\;10.8{\pm}1.0%,\;9.6{\pm}1.2%\;and\;12.4{\pm}1.5%,\;11.8{\pm}1.5%,\;11.2{\pm}1.4%$ respectively. This was higher than that in both single and combined stimulated groups compared to control group ($6.2{\sim}7.2%$).

Activation of Bovine Oocytes by Combined Treatment with Ionomycin and cdc2 Kinase Inhibitor

  • Yoo, J.G.;Cho, S.R.;Lee, S.L.;Ock, S.A.;Rho, G.J.;Son, D.S.;Lee, H.J.;Choe, S.Y.
    • Journal of Embryo Transfer
    • /
    • v.16 no.3
    • /
    • pp.223-231
    • /
    • 2001
  • The success of nuclear transplantation with mammalian oocytes depends critically on the potential of oocytes activation, which mainly caused to prevent the re-accumulation of maturation promoting factor (MPF). This study was conducted to compare the effect of combined treatment of lonomycin with a Hl-histone kinase inhibitor (dimethylaminopurine, DMAP) or cdc2 kinase inhibitor (sodium pyrophosphate, SPP) on activation of bovine oocytes. In vitro matured bovine oocytes with the first polar body (PB) and dense cytoplasm were assigned to 3 experimental groups. For activation treatment, oocytcs were exposed to 5 $\mu$M lonomycin for 5 min (Group 1), and followed by 1.9 mM dimethylaminopurine (DMAP) for 3 h (Group 2) or followed by 2 mM sodium pyrophosphate (SPP) for 3 h (Group 3). The activation effects in the three treatments and the control group (untreated) were judged by the extrusion of the second PB and formation of a pronucleus (PN). Differences among groups were analysed using one-way ANOVA after arc-sine transformation of proportional data. All three treatments led to high activation rates (90% to 95%), with significant difference from the control. However, the extrusion of the second PB and the rate of PN formation differed remarkably among treatments. In Group I and 3, about 95% of the oocytes had extruded the second polar body, but one PN had formed in a higher proportion of oocytes in Group 3 than in Group 1 (90% vs. 5%). In experiment 2, the rates of cleavage and development into blastocysts in Group 1 were significantly lower than those of Group 2 and 3 (8.7% and 0% vs. 50.5% and 11.6%, and 44.6% and 7.2%, respectively, P<0.05). In experiment 3, ~80% of parthenotes in Group 1 were developed with haploid chromosomal sets. However, when ionomycin was followed immediately by DMAP (Group 2). only 20% of parthenotes were haploid. In Group 3, combined treatment with ionomycin and SPP, the appearance of abnormal chromosomal tracts was significantly (P〈0.05) reduced and the proportion of haploid parthenotes was increased to 85% (17/20) than in Group 2. These results demonstrate that SPP acted as a cdc2 kinase inhibitor and formed the haploidy in oocyte activation. Thus, the present study suggests that cdc2 kinase inhibitor, such as sodium pyrophosphate, may have an effective role in oocyte activation for the production of cloned embryos/animals by nuclear transplantation.

  • PDF

Effects of Sperm Membrane Disruption and Electrical Activation of Oocytes on In vitro Development and Transgenesis of Porcine Embryos Produced by Intracytoplasmic Sperm Injection

  • Shim, Sang Woo;Kim, Young Ha;Lee, Hoon Taek;Shim, Hosup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.358-363
    • /
    • 2008
  • The intracytoplasmic sperm injection (ICSI) procedure has recently been utilized to produce transgenic animals and may serve as an alternative to the conventional pronuclear microinjection in species such as pigs whose ooplasm is opaque and pronuclei are often invisible. In this study, the effects of sperm membrane disruption and electrical activation of oocytes on in vitro development and expression of transgene green fluorescent protein (GFP) in ICSI embryos were tested to refine this recently developed procedure. Prior to ICSI, sperm heads were treated with Triton X-100+NaCl or Triton X-100+NaCl+NaOH, to disrupt membrane to be permeable to exogenous DNA, and incubated with linearized pEGFP-N1 vector. To induce activation of oocytes, a single DC pulse of 1.3 kV/cm was applied to oocytes for $30{\mu}sec$. After ICSI was performed with the aid of a micromanipulator, in vitro development of embryos and GFP expression were monitored. The chemical treatment to disrupt sperm membrane did not affect the developmental competence of embryos. 40 to 60% of oocytes were cleaved after injection of sperm heads with disrupted membrane, whereas 48.6% (34/70) were cleaved without chemical treatment. Regardless of electrical stimulation to induce activation, oocytes were cleaved after ICSI, reflecting that, despite sperm membrane disruption, the perinuclear soluble sperm factor known to mediate oocyte activation remained intact. After development to the 4-cell stage, 11.8 (2/17, Triton X-100+NaCl+NaOH) to 58.8% (10/17, Triton X-100+NaCl) of embryos expressed GFP. The expression of GFP beyond the stage of embryonic genome activation (4-cell stage in the pig) indicates that the exogenous DNA might have been integrated into the porcine genome. When sperm heads were co-incubated with exogenous DNA following the treatment of Triton X-100+NaCl, GFP expression was observed in high percentage (58.8%) of embryos, suggesting that transgenic pigs may efficiently be produced using ICSI.