• Title/Summary/Keyword: activation factor

Search Result 2,337, Processing Time 0.028 seconds

Single-cell RNA sequencing identifies distinct transcriptomic signatures between PMA/ionomycin- and αCD3/αCD28-activated primary human T cells

  • Jung Ho Lee;Brian H Lee;Soyoung Jeong;Christine Suh-Yun Joh;Hyo Jeong Nam;Hyun Seung Choi;Henry Sserwadda;Ji Won Oh;Chung-Gyu Park;Seon-Pil Jin;Hyun Je Kim
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.18.1-18.11
    • /
    • 2023
  • Immunologists have activated T cells in vitro using various stimulation methods, including phorbol myristate acetate (PMA)/ionomycin and αCD3/αCD28 agonistic antibodies. PMA stimulates protein kinase C, activating nuclear factor-κB, and ionomycin increases intracellular calcium levels, resulting in activation of nuclear factor of activated T cell. In contrast, αCD3/αCD28 agonistic antibodies activate T cells through ZAP-70, which phosphorylates linker for activation of T cell and SH2-domain-containing leukocyte protein of 76 kD. However, despite the use of these two different in vitro T cell activation methods for decades, the differential effects of chemical-based and antibody-based activation of primary human T cells have not yet been comprehensively described. Using single-cell RNA sequencing (scRNA-seq) technologies to analyze gene expression unbiasedly at the single-cell level, we compared the transcriptomic profiles of the non-physiological and physiological activation methods on human peripheral blood mononuclear cell-derived T cells from four independent donors. Remarkable transcriptomic differences in the expression of cytokines and their respective receptors were identified. We also identified activated CD4 T cell subsets (CD55+) enriched specifically by PMA/ionomycin activation. We believe this activated human T cell transcriptome atlas derived from two different activation methods will enhance our understanding, highlight the optimal use of these two in vitro T cell activation assays, and be applied as a reference standard when analyzing activated specific disease-originated T cells through scRNA-seq.

Sulforaphane Inhibits Osteoclastogenesis by Inhibiting Nuclear Factor-κB

  • Kim, Soo-Jin;Kang, So-Young;Shin, Hyun-Hee;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.364-370
    • /
    • 2005
  • We show that sulforaphane inhibits osteoclastogenesis in the presence of macrophage colony-stimulating factor (M-CSF) and receptor for activation of nuclear factor-${\kappa}B$ ligand (RANKL) in osteoclast (OC) precursors. Sulforaphane, an aliphatic isothiocyanate, is a known cancer chemo-preventative agent with anti-oxidative properties. Nuclear factor-${\kappa}B$ (NF-${\kappa}B$) is a critical transcription factor in RANKL-induced osteoclastogenesis, and electrophoretic mobility shift assays (EMSAs) and assay of NF-${\kappa}B$-mediated secreted alkaline phosphatase (SEAP) revealed that sulforaphane selectively inhibited NF-${\kappa}B$ activation induced by RANKL. Inhibition may involve interaction of sulforaphane with thiol groups, since it was prevented by reducing agents.

Suppression of the TRIF-Dependent Signaling Pathway of Toll-Like Receptors by Isoliquiritigenin in RAW264.7 Macrophages

  • Park, Se-Jeong;Song, Ho-Yeon;Youn, Hyung-Sun
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.365-368
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens and initiating innate immune responses. The stimulation of TLRs by microbial components triggers the activation of myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-${\beta}$ (TRIF)-dependent downstream signaling pathways. Isoliquiritigenin (ILG), an active ingredient of Licorice, has been used for centuries to treat many chronic diseases. ILG inhibits the MyD88-dependent pathway by inhibiting the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether ILG inhibits the TRIF-dependent pathway. To evaluate the therapeutic potential of ILG, we examined its effect on signal transduction via the TRIF-dependent pathway of TLRs induced by several agonists. ILG inhibited nuclear factor-${\kappa}B$ and interferon regulatory factor 3 activation induced by lipopolysaccharide or polyinosinic-polycytidylic acid. ILG inhibited the lipopolysaccharide-induced phosphorylation of interferon regulatory factor 3 as well as interferon-inducible genes such as interferon inducible protein-10, and regulated activation of normal T-cell expressed and secreted (RANTES). These results suggest that ILG can modulate TRIF-dependent signaling pathways of TLRs, leading to decreased inflammatory gene expression.

Humanin suppresses receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation via AMP-activated protein kinase activation

  • Kang, Namju;Kim, Ki Woo;Shin, Dong Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.411-417
    • /
    • 2019
  • Humanin (HN) is a mitochondrial peptide that exhibits cytoprotective actions against various stresses and diseases. HN has been shown to induce the phosphorylation of AMP-activated protein kinase (AMPK), which is a negative regulator of receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL). However, the role of HN in osteoclastogenesis or other skeletal disorders remains unknown. Here, we examined whether HN regulates osteoclastogenesis via AMPK activation using bone marrow-derived macrophage (BMM) cultures. Our results show that HN inhibited RANKL-induced osteoclast formation and reduced the expression of genes involved in osteoclastogenesis, including nuclear factor of activated T-cells cytoplasmic 1, osteoclastassociated receptor, cathepsin K, and tartrate-resistant acid phosphatase. Moreover, HN increased the levels of phosphorylated AMPK protein; compound C, an AMPK inhibitor, recovered HN-induced osteoclast differentiation. In addition, we found that HN significantly decreased the levels of RANKL-induced reactive oxygen species in BMMs. Therefore, these results indicate that HN plays an important role in osteoclastogenesis and may function as an inhibitor of bone disorders via AMPK activation.

The Anti-inflammatory Mechanism of Pu-erh Tea via Suppression the Activation of NF-κB/HIF-1α in LPS-stimulated RAW264.7 Cells

  • Su-Jin Kim
    • Biomedical Science Letters
    • /
    • v.29 no.2
    • /
    • pp.58-65
    • /
    • 2023
  • Pu-erh tea, a popular and traditional Chinese tea, possesses various health-promoting effects, including inhibiting tumor cell progression and preventing type II diabetes and neurodegenerative disorders. However, the precise anti-inflammatory mechanisms are not well understood. In present study, we elucidated the anti-inflammatory mechanism of Pu-erh tea in lipopolysaccharide (LPS)-activated RAW264.7 cells. We explored the effects of Pu-erh tea on the levels of inflammatory-related genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) in LPS-activated RAW264.7 cells. Moreover, we investigated its regulatory effects on nuclear factor-kappa B (NF)-κB and hypoxia-inducible-factor (HIF)-1α activation. The findings of this study demonstrated that Pu-erh tea inhibited the LPS-increased inflammatory cytokines and PGE2 release, as well as COX-2 and iNOS expression. Moreover, we confirmed that the anti-inflammatory mechanism of Pu-erh tea occurs via the inhibition of NF-κB and HIF-1α activation. Conclusively, these findings provide experimental evidence that Pu-erh tea may be useful candidate in the treatment of inflammatory-related diseases.

Role of Nuclear Factor (NF)-κB Activation in Tumor Growth and Metastasis (종양의 성장 및 전이에 있어서 NF-κB의 역할)

  • Ko, Hyun-Mi;Choi, Jung-Hwa;Ra, Myung-Suk;Im, Suhn-Young
    • IMMUNE NETWORK
    • /
    • v.3 no.1
    • /
    • pp.38-46
    • /
    • 2003
  • Background: Platelet-activating factor (PAF) induces nuclear factor $(NF)-{\kappa}B$ activation and angiogenesis and increases tumor growth and pulmonary tumor metastasis in vivo. The role of $NF-{\kappa}B$ activation in PAF-induced angiogenesis in a mouse model of Matrigel implantation, and in PAF-mediated pulmonary tumor metastasis were investigated. Methods: Angiogenesis using Matrigel and experimental pulmonary tumor metastasis were tested in a mouse model. Electrophoretic mobility shift assay was done for the assessment of $NF-{\kappa}B$ translocation to the nucleus. Expression of angiogenic factors, such as tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\alpha}$, basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) were tested by RT-PCR and ELISA. Results: PAF induced a dose- and time-dependent angiogenic response. PAF-induced angiogenesis was significantly blocked by PAF antagonist, CV6209, and inhibitors of $NF-{\kappa}B$ expression or action, including antisense oligonucleotides to p65 subunit of $NF-{\kappa}B$ (p65 AS) and antioxidants such as ${\alpha}$-tocopherol and N-acetyl-L-cysteine. In vitro, PAF activated the transcription factor, $NF-{\kappa}B$ and induced mRNA expression of $TNF-{\alpha}$, $IL-1{\alpha}$, bFGF, VEGF, and its receptor, KDR. The PAF-induced expression of the above mentioned factors was inhibited by p65 AS or antioxidants. Also, protein synthesis of VEGF was increased by PAF and inhibited by p65 AS or antioxidants. The angiogenic effect of PAF was blocked when anti-VEGF antibodies was treated or antibodies against $TNF-{\alpha}$, $IL-1{\alpha}$, and bFGF was co-administrated, but not by antibodies against $TNF-{\alpha}$, $IL-1{\alpha}$, and bFGF each alone. PAF-augmented pulmonary tumor metastasis was inhibited by p65 AS or antioxidants. Conclusion: These data indicate that PAF increases angiogenesis and pulmonary tumor metastasis through $NF-{\kappa}B$ activation and expression of $NF-{\kappa}B$-dependent angiogenic factors.

Study on Immunosuppressive Effects of Rosa Chinensis Jacq. Extract (월계화 추출물의 면역억제 효능 연구)

  • Kim, Kyoung-Shin;Park, Jae-Won;Chae, Suhn-Kee;Kang, Jung-Soo;Kim, Byoung-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.459-465
    • /
    • 2011
  • The nuclear factor of activated T cells (NFAT) protein induces transcriptions of cytokine genes including IL-2 for T-cell activation. Normally activation of NFAT is important to induce immune responses but excessive NFAT activation provokes immunopathological reactions such as autoimmunity, transplant rejection, and inflammation. Thus, for the treatment of autoimmune diseases drugs repressing the activation of NFAT have been searched. In this study, immnunosuppressive effects of Rosa chinensis Jacq. extracts identified as a potent NFAT inhibitor from a natural product library were examined. NFAT reporter assay, MTS assay, real time PCR, IL-2 ELISA, MLR, and FACS (Fluorescent Activated Cell Sorting) were used to measure inhibitory immunocyte activities of Rosa chinensis Jacq. The variety of natural products have been screened and some were found to show inhibitory activities against the NFAT transcription factor. Among them, extract of Rosa chinensis Jacq. showed an strong inhibitory effect on the activation of NFAT without affecting cell viability. Levels of IL-2 transcripts as well as IL-2 protein were decreased with treatment of Rosa chinensis Jacq. extract. In addition, immunosuppressive activity of Rosa chinensis Jacq. extract was exhibited in the mixed leukocytes reaction. The increasement of CD4+CD25+ (Treg) immunocyte was also detected in the analysis using FACS after applying Rosa chinensis Jacq. extract. Immunosuppressive effects of the Rosa chinensis Jacq. extracts were clearly demonstrated in the present study. In addition, Rosa chinensis Jacq. extract also positively affected regulatory T cell induction. Further investigations in particular on purification of single substance responsible for the immunosuppressive effects from the extract and analysis on possible actions of the extract in interfering cell signaling and cytokine production will be needed.

Gambogic Acid Disrupts Toll-like Receptor4 Activation by Blocking Lipopolysaccharides Binding to Myeloid Differentiation Factor 2

  • Lee, Jin Young;Lee, Byung Ho;Lee, Joo Young
    • Toxicological Research
    • /
    • v.31 no.1
    • /
    • pp.11-16
    • /
    • 2015
  • Our body's immune system has defense mechanisms against pathogens such as viruses and bacteria. Immune responses are primarily initiated by the activation of toll-like receptors (TLRs). In particular, TLR4 is well-characterized and is known to be activated by gram-negative bacteria and tissue damage signals. TLR4 requires myeloid differentiation factor 2 (MD2) as a co-receptor to recognize its ligand, lipopolysaccharides (LPS), which is an extracellular membrane component of gram-negative bacteria. Gambogic acid is a xanthonoid isolated from brownish or orange resin extracted from Garcinia hanburyi. Its primary effect is tumor suppression. Since inflammatory responses are related to the development of cancer, we hypothesized that gambogic acid may regulate TLR4 activation. Our results demonstrated that gambogic acid decreased the expression of pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6, IL-12, and $IL-1{\beta}$) in both mRNA and protein levels in bone marrow-derived primary macrophages after stimulation with LPS. Gambogic acid did not inhibit the activation of Interferon regulatory factor 3 (IRF3) induced by TBK1 overexpression in a luciferase reporter gene assay using IFN-${\beta}$-PRD III-I-luc. An in vitro kinase assay using recombinant TBK1 revealed that gambogic acid did not directly inhibit TBK1 kinase activity, and instead suppressed the binding of LPS to MD2, as determined by an in vitro binding assay and confocal microscopy analysis. Together, our results demonstrate that gambogic acid disrupts LPS interaction with the TLR4/MD2 complex, the novel mechanism by which it suppresses TLR4 activation.

Anti-inflammatory effect of Samultang in human mast cell line HMC-1

  • Choi In-Young;Kim Su-Jin;Kang Tae-Hee;Lee Byung-Hee;Lee Joon-Ho;Lee Ju-Young;Kim Hyung-Min;Hong Seung-Heon;Um Jae-Young
    • Advances in Traditional Medicine
    • /
    • v.6 no.3
    • /
    • pp.237-244
    • /
    • 2006
  • Samultang has been believed for prevention and remedy various blood diseases such as menstrual irregularity, anemia, and metrorrhagia. However, the mechanism that accounts for anti-inflammatory effects of the Samultang is still not fully understood. This study was designed to evaluate whether and how the Samultang could modulate the production of pro-inflammatory cytokines in phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187 treated-human mast cell line, HMC-1. Samultang inhibited the production of tumor necrosis factor $(TNF)-\alpha$, interleukin (IL)-6, granulocyte macrophage colony stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF) in HMC-1. Maximal inhibition rate of $TNF-\alpha$, IL-6, GM-CSF, and VEGF by 0.1 mg/ml Samultang was about $70.73{\pm}3.0%,\;51.49{\pm}4.14%,\;54.03{\pm}2.09%$, and $47.95{\pm}7.86%$, respectively. Samultang partially blocked PMA plus A23187-induced cyclooxygenase (COX)-2 expression. In addition, Samultang inhibited activation of nuclear factor (NF)-kB, and extracellular signal-regulated kinase (ERK) activation. These results suggest that anti-inflammatory effect of Samulatng may be mediated by the suppression of cytokine production and COX-2 activation via down-regulation of NF-kB and ERK activation.

Korean Red Ginseng Extract Inhibits IL-8 Expression via Nrf2 Activation in Helicobacter pylori-Infected Gastric Epithelial Cells

  • Hae Sou Kim;Joo Weon Lim;Hyeyoung Kim
    • Journal of Web Engineering
    • /
    • v.14 no.5
    • /
    • pp.1044-1057
    • /
    • 2022
  • Helicobacter pylori (H. pylori) causes gastric diseases by increasing reactive oxygen species (ROS) and interleukin (IL)-8 expression in gastric epithelial cells. ROS and inflammatory responses are regulated by the activation of nuclear factor erythroid-2-related factor 2 (Nrf2) and the expression of Nrf2 target genes, superoxide dismutase (SOD) and heme oxygenase-1 (HO-1). We previously demonstrated that Korean red ginseng extract (RGE) decreases H. pylori-induced increases in ROS and monocyte chemoattractant protein 1 in gastric epithelial cells. We determined whether RGE suppresses the expression of IL-8 via Nrf2 activation and the expression of SOD and HO-1 in H. pylori-infected gastric epithelial AGS cells. H. pylori-infected cells were treated with RGE with or without ML385, an Nrf2 inhibitor, or zinc protoporphyrin (ZnPP), a HO-1 inhibitor. Levels of ROS and IL-8 expression; abundance of Keap1, HO-1, and SOD; levels of total, nuclear, and phosphorylated Nrf2; indices of mitochondrial dysfunction (reduction in mitochondrial membrane potential and ATP level); and SOD activity were determined. As a result, RGE disturbed Nrf2-Keap1 interactions and increased nuclear Nrf2 levels in uninfected cells. H. pylori infection decreased the protein levels of SOD-1 and HO-1, as well as SOD activity, which was reversed by RGE treatment. RGE reduced H. pylori-induced increases in ROS and IL-8 levels as well as mitochondrial dysfunction. ML385 or ZnPP reversed the inhibitory effect of RGE on the alterations caused by H. pylori. In conclusion, RGE suppressed IL-8 expression and mitochondrial dysfunction via Nrf2 activation, induction of SOD-1 and HO-1, and reduction of ROS in H. pylori-infected cells.