• Title/Summary/Keyword: activation energy for decomposition

Search Result 128, Processing Time 0.02 seconds

Effect of Solvents as Subcritical and Supercritical Fluid on Decomposition and Extraction of Used Automotive Tire (아임계와 초임계유체로써 폐타이어 분해와 추출에 미치는 용매의 영향)

  • Kang, W.S.;Na, D.Y.;Kim, I.S.;Han, S.B.;Park, P.W.
    • Elastomers and Composites
    • /
    • v.34 no.3
    • /
    • pp.239-246
    • /
    • 1999
  • Side wall samples from a used automotive tire were subjected to subcritical and supercritical decomposition and extraction with three solvents, water, 28% ammonia solution and ammonia. For 6mm cube samples the rate of supercritical extraction with water followed a first-order kinetics with an activation energy of 140 kJ/mol. Solvent power of 28% ammonia so lotion at supercritical condition was found to be higher than supercritical water at initial extraction as pressure decreased. These phenomena were considered to be an effect of ammonia involved in water.

  • PDF

A Study on Thermal Decomposition Characteristics of exo-tetrahydrodicyclopentadiene with Variation of Flow Rate (유량 변화에 따른 exo-tetrahydrodicyclopentadiene의 열분해특성에 관한 연구)

  • Kang, Saetbyeol
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.763-767
    • /
    • 2019
  • In this study, thermal decomposition characteristics of exo-tetrahydrodicyclopentadiene (exo-THDCP) composed with a single compound were analyzed by using a flow reactor. The experiments were carried out at $500^{\circ}C$, 50 bar and the products of each flow rate condition were analyzed by using a GC/MS. As a result, it was confirmed that exo-THDCP was decomposed mainly into cyclic compounds and a part was isomerized by heat. As the flow rate was increased, the kinds and ratio of compounds produced through the decomposition and isomerization were decreased. Also, the conversion rate of exo-THDCP and the amount of heat absorbed during the decomposition were also decreased. The compounds rapidly produced by decomposition were mainly formed through the radical form of 1-cyclopentylcyclopentene (1-CPCP) which is one of the intermediates that can be formed from exo-THDCP because it has the lowest activation energy of 42 kcal/mol.

Effect of Zirconia Particle Addition on Curing Behavior of Phenolic Resins (Zirconia 입자의 첨가가 페놀 수지의 경화거동에 미치는 영향)

  • Yun, Jaeho;Kim, Hanjun;Lee, Jae Min;Kim, Jong Hee;Lee, Seung Goo
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.288-297
    • /
    • 2022
  • This study investigated the effect of addition of zirconia(zirconium oxide) powder on the curing behavior of phenolic resins. The heating rate controlled curing and isothermal curing behaviors of the phenol resin according to the content of the zirconia powder were analyzed. The viscosity and thermal decomposition characteristics of the phenolic resin with the zirconia content were also examind. From the DSC analysis, the degree of cure and the rate of cure were obtained. Finally, the activation energy for the cure reaction were calculated from the DSC data of the zirconia added phenolic resin. As a found, the higher the zirconia content, the longer the curing was delayed and the greater the activation energy required for curing. Additionally, the TGA result that as the content of zirconia increased, less weight loss was observed. The surface tackiness of the Carbon/Phenol prepreg was partially changed according to the zirconia content, but had no significant effect.

Effects of NaCl/H3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties (NaCl/H3PO4 내염화 처리가 라이오셀 섬유의 열 안정 및 내산화 특성에 미치는 영향)

  • Kim, Eun Ae;Bai, Byong Chol;Jeon, Young-Pyo;Lee, Chul Wee;Lee, Young-Seak;In, Se Jin;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.418-424
    • /
    • 2014
  • The improved thermal stability and anti-oxidation properties of Lyocell fiber were studied based on flame retardant treatment by using NaCl/$H_3PO_4$ solution. The optimized conditions of flame retardant treatment were studied on various maxing ratio of NaCl and $H_3PO_4$ and the mechanism was proposed through experimental results of thermal stability anti-oxidation. The IPDT (integral procedural decomposition temperature), LOI (limited oxygen index) and $E_a$ (activation energy) increased 23, 30 and 24% respectively via flame retardant treatment. It is noted that thermal stability and anti-oxidation improved based on char and carbon layer formation by dehydrogenation and dissociation of C-C bond resulting the hindrance of oxygen and heat energy into polymer resin. The optimized conditions for efficient flame retardant property of Lyocell fiber were provided using NaCl/$H_3PO_4$ solution and the mechanism was also studied based on experimental results such as IDT (initial decomposition temperature), IPDT, LOI and $E_a$.

Cure Kinetics, Thermal Stabilities and Rheological Properties of Epoxy/phenol Resin Blend System Initiated by Cationic Thermal Latent Catalyst (양이온 열잠재성 개시제에 의한 에폭시/페놀 수지 브랜드 시스템의 경화 동력학.열안정성 및 유변학적 특성)

  • 박수진;서민강;이재락
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.135-142
    • /
    • 1999
  • The effects of 1 wt.% N-benzylpyrazinium hexafluoroantimonate (BPH) as a thermal latent initiator and blend compositions composed of 0, 5, 10, 20 and 40 wt.% of phenol-novolac resin to epoxy resin were investigated in terms of cure kinetics, thermal stabilities and rheological properties. Thermal latent properties of BPH were measured from the conversion as a function of reaction temperature on a dynamic DSC. This cationic BPH system turned out to be an effective thermal latent initiator in the epoxy-phenol curing system. And the increase of phenol-novolac resin concentration led to the decrease in the latent temperature and to the increase of cure activation energy ($E_a$) of the blend system. The thermal stability and activation energy ($E_t$) for decomposition, gel-time and activation energy ($E_c$) for cross-linking from rheometer increased within the composition range of 20~40 wt.% of phenol-novolac resin. This implies that the three-dimensional cross-linking may take place among hydroxyl group within phenol resin, epoxide ring within epoxy resin and BPH.

  • PDF

Na3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties (라이오셀의 열 안정 및 내산화 특성 향상을 위한 Na3PO4 내염화 처리)

  • Kim, Hyeong Gi;Kim, Eun Ae;Lee, Young-Seak;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.25-32
    • /
    • 2015
  • The improved thermal stability and anti-oxidation properties of lyocell fiber were studied based on flame retardant treatment by using $Na_3PO_4$ solution. The optimized conditions of flame retardant treatment were studied on various concentrations of $Na_3PO_4$ and the mechanism was proposed through experimental results of thermal stability and anti-oxidation. The integral procedural decomposition temperature (IPDT), limiting oxygen index (LOI) and activation energy ($E_a$) increased 30, 160% respectively via flame retardant treatment. It is noted that thermal stability and anti-oxidation improved based on char and carbon layer formation by dehydrogenation and dissociation of C-C bond resulting the hindrance of oxygen and heat energy into polymer resin. The optimized conditions for efficient flame retardant property of lyocell fiber were provided using $Na_3PO_4$ solution and the mechanism was also studied based on experimental results such as initial decomposition temperature (IDT), IPDT, LOI and $E_a$.

Preparation of Al/RDX/AP Energetic Composites by Drowning-out/Agglomeration and Their Thermal Decomposition Characteristics (결정화/응집에 의한 구형 Al/RDX/AP 에너지 복합체 제조 및 그 열분해 특성)

  • Lee, Jeong-Hwan;Shim, Hong-Min;Kim, Jae-Kyeong;Kim, Hyoun-Soo;Koo, Kee-Kahb
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.214-220
    • /
    • 2017
  • The spherical Al/RDX/AP composites with an average size of $550{\mu}m$ were successfully prepared by drowning-out/agglomeration (D/A) process. The surface morphology and dispersion of Al particles of those composites were investigated using SEM and EDS (energy dispersive spectrometry). As a result of thermal analysis, the onset temperature of thermal decomposition of the Al/RDX/AP composites by the D/A process was found to decrease about $50^{\circ}C$ and their thermal stability was shown to be relatively enhanced due to the increase of activation energy compared to those of using the physical mixing method. In the first decomposition region of AP, Prout-Tompkins model was shown to describe well the thermal decomposition of both composites by the physical mixing and D/A process. On the other hand, in the second decomposition region of AP, the decomposition mechanisms of composites by the physical mixing and D/A process were explained by the zero-order and contracting volume model, respectively.

Characterization of Thermal Degradation of Polymide 66 Composite: Relationship between Lifetime Prediction and Activation Energy (폴리아미드 66 복합소재의 열 열화 특성: 수명 예측과 활성화 에너지의 상관관계)

  • Jung, Won-Young;Weon, Jong-Il
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.712-720
    • /
    • 2012
  • Thermal degradation for glass fiber-reinforced polyamide 66 composite (PA 66) with respect of thermal exposure time has been investigated using optical microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. As the thermal exposure time was prolonged, a slight increase in tensile strength for only initial stage and afterward, a proportional decrease of tensile strength was observed. These results can be explained by the increase of crystallinity, followed by the increase of crosslinking density, chain scission and the decrease in chain mobility, due to thermal oxidation with the exposure time. Fourier transform infrared spectroscopy results showed the increase of ketone peak and silica peak on the surface of thermally exposed PA 66. In addition, the thermal decomposition kinetics of PA 66 was analyzed using thermogravimetric analysis at three different heating rates. The relationship between activation energy and lifetime-prediction of PA 66 was investigated by several methodologies, such as statistical tool, UL 746B, Ozawa and Kissinger. The activation energy determined by thermogravimetric analysis had a relatively large value compared with that from the accelerated test. This may result in over-estimating the lifetime of PA 66. In this study, a master curve of exponential fitting has been developed to extrapolate the activation energy at various service temperatures.

A Study on Activity Testing of Various Catalysts for Hydrogen Production from Ammonia (암모니아로부터 수소 제조를 위한 다양한 촉매 활성 테스트에 관한 연구)

  • JAE-HYEOK LEE;KYOUNG-HA SHIN;JINSIL KANG;HYEONHUI SHIN;SEYEON PARK;YUJIN CHOI;WANGYU SONG;HO-GEUN AHN
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.587-593
    • /
    • 2023
  • This research project focused on the production of hydrogen through ammonia decomposition reactions while investigating how the reactivity of this process varies when employing different catalysts. Several metal oxide supports (Al2O3, La2O3, CeO2) were utilized as catalysts, with active metals from both the transition metal group (Co, Ni, Fe, Cr, Cu) and the noble metal group (Ru, Rh, Pd, Pt) impregnated onto these supports. Furthermore, the study examined how the reactivity evolves with changes in reaction temperature when employing the prepared catalysts. Additionally, the research delved into the distinctive activation energies associated with each of the catalysts. In this research, In the noble metal catalyst system, the order of high activity for ammonia decomposition reaction to produce hydrogen is Ru > Rh > Pt ≈ Pd. In the transition metal catalyst system, the order of high activity is Co > Ni > Fe > Cr > Cu.

Effect of Siloxane Oligomer on Thermal Stability and Internal Stress of Epoxy Resins (실록산 올리고머가 에폭시 수지의 열안정성 및 내부응력에 미치는 영향)

  • Kwak, Geun-Ho;Park, Soo-Jin;Park, Jun-Ha;Kim, Kong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.701-706
    • /
    • 1999
  • The effect of siloxane oligomer content on thermal stability and internal stress of DGEBA epoxy resin was investigated. Siloxane-epoxy polymers having terminal epoxy group were prepared by reaction of siloxane-DDM prepolymer with DGEBA epoxy resin. Thermal stability was studied in terms of the initial decomposition temperature(IDT), temperature of maximum rate of weight loss($T_{max}$), integral procedural decomposition temperature(IPDT), and decomposition activation energy($E_t$) using TGA data. The thermal stability increased with increasing the siloxane oligomer content and showed a maximum value in the case of 5 wt% siloxane oligomer content in the blend system. While, the coefficient of thermal expansion(${\alpha}_r$) and the flexural modulus($E_r$) allowed us to study internal stress of the blend system. As the content of siloxane oligomer increases, the internal stress systematically decreases as decreasing both ${\alpha}_r$ and $E_r$.

  • PDF