DOI QR코드

DOI QR Code

Effects of NaCl/H3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties

NaCl/H3PO4 내염화 처리가 라이오셀 섬유의 열 안정 및 내산화 특성에 미치는 영향

  • Kim, Eun Ae (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Bai, Byong Chol (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Jeon, Young-Pyo (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Chul Wee (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • In, Se Jin (Department of Fire and Disaster Protection Engineering, Woosong University) ;
  • Im, Ji Sun (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT))
  • 김은애 (한국화학연구원 C-산업육성센터) ;
  • 배병철 (한국화학연구원 C-산업육성센터) ;
  • 이철위 (한국화학연구원 C-산업육성센터) ;
  • 전영표 (한국화학연구원 C-산업육성센터) ;
  • 이영석 (충남대학교 바이오 응용화학과) ;
  • 인세진 (우송대학교 소방방재학과) ;
  • 임지선 (한국화학연구원 C-산업육성센터)
  • Received : 2014.06.20
  • Accepted : 2014.07.08
  • Published : 2014.08.10

Abstract

The improved thermal stability and anti-oxidation properties of Lyocell fiber were studied based on flame retardant treatment by using NaCl/$H_3PO_4$ solution. The optimized conditions of flame retardant treatment were studied on various maxing ratio of NaCl and $H_3PO_4$ and the mechanism was proposed through experimental results of thermal stability anti-oxidation. The IPDT (integral procedural decomposition temperature), LOI (limited oxygen index) and $E_a$ (activation energy) increased 23, 30 and 24% respectively via flame retardant treatment. It is noted that thermal stability and anti-oxidation improved based on char and carbon layer formation by dehydrogenation and dissociation of C-C bond resulting the hindrance of oxygen and heat energy into polymer resin. The optimized conditions for efficient flame retardant property of Lyocell fiber were provided using NaCl/$H_3PO_4$ solution and the mechanism was also studied based on experimental results such as IDT (initial decomposition temperature), IPDT, LOI and $E_a$.

본 연구에서는 NaCl/$H_3PO_4$ 혼합수용액을 사용하여 라이오셀 섬유의 내염화 처리를 수행하고 이에 따른 열 안정성과 내산화성의 향상 효과를 고찰하였다. 라이오셀 섬유를 다양한 공정조건으로 내염화 처리한 후 열 안정성과 내산화성을 측정 및 분석하고 그에 따른 메커니즘을 제시하였다. 실험결과, 내염화 처리된 라이오셀 섬유의 적분 열분해 온도(integral procedural decomposition temperature, IPDT)와 한계산소지수(limited oxygen index, LOI)는 약 23, 30% 증가하였으며, 활성화 에너지(activation energy, $E_a$) 값은 약 24% 향상된 것을 알 수 있었다. 이러한 결과는 $H_3PO_4$와 NaCl가 연소시 에스테르화 반응, 탈수소화 반응 및 C-C결합의 분해반응으로 char 형성을 촉진하고 섬유 표면에 형성된 탄소 층을 형성함으로써, 고분자 수지 내부로 산소와 열 공급을 물리적으로 차단하여 열 안정성과 내산화성이 향상된 것으로 판단된다. 이러한 결과를 바탕으로, NaCl/$H_3PO_4$ 혼합수용액을 이용한 내염화 처리 공정의 최적화된 인자 및 메커니즘을 제시하였고 열 안정성과 내산화성이 향상된 라이오셀을 성공적으로 제조하였다.

Keywords

References

  1. J. B. Donnet and R. C. Bansal, Carbon Fibers, 3rd ed., 12-27, Marcel Dekker, NY, USA (1984).
  2. X. Huang, Fabrication and properties of carbon fibers, Materials, 2, 2369-2403 (2009). https://doi.org/10.3390/ma2042369
  3. A. D. Cato and D. D. Edie, Flow behavior of mesophase pitch, Carbon, 41, 1411-1417 (2003). https://doi.org/10.1016/S0008-6223(03)00050-2
  4. O. P. Bahl and L. M. Manocha, Characterization of oxidized pan fibers, Carbon, 12, 417-423 (1974). https://doi.org/10.1016/0008-6223(74)90007-4
  5. D. J. Johnson and C. N. Tyson, The fine structure of graphitized fibers, J. Phys. D, 2, 787-795 (1969). https://doi.org/10.1088/0022-3727/2/6/303
  6. J. B. Donnet, S. Rebouillat, T. K. Wang, and J. C. M. Peng, Carbon Fibers., 3rd ed., 1-85, Marcel Dekker, NY, USA (1998).
  7. L. H. Peebles, Carbon Fibers: Formation, Structure, and Properties, 1st ed., 3, CRC Press, FL, USA (1995).
  8. C. R. Woodings, The development of advanced cellulosic fibers, Int. J. Biol. Macromol., 17, 305-309 (1995). https://doi.org/10.1016/0141-8130(96)81836-8
  9. J. Y. Lee, Fabrication and Properties of Novel Lyocell/Poly (lactic acid) and Lyocell/Poly (butylene suc-cinate) Biocomposite and Lyocell-Based Carbon Fabric/Phenolic Composites, M.S Dissertation, Kumoh National Institute of Technology, Gumi, Korea (2009).
  10. C. Cho, D. Cho, J. K. Park, and J. Y. Lee, Effect of isothermal stabilization process and ultrasonic cleaning on the characteristics of rayon fabrics, Appl. J. Adhes. Interface, 14, 21-27 (2013). https://doi.org/10.17702/jai.2013.14.1.021
  11. Y. S. Lee and Y. H. Kim, Anti-oxidation properties of surface treatment carbon fibers with pyrolytic carbon and silicon carbide, Appl. Chem. Eng., 11, 910-916 (2000).
  12. S. J. Park, F. L. Jin, and J. R. Lee, Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil, Mater. Sci. Eng. A, 374, 109-114 (2004). https://doi.org/10.1016/j.msea.2004.01.002
  13. S. J. Park, H. Y. Lee, M. j. Han, and S. K. Hong, Thermal and mechanical interfacial properties of the DGEBA/PMR-15 blend system, J. Colloid interface Sci., 270, 288-294 (2004). https://doi.org/10.1016/S0021-9797(03)00757-4
  14. S. Liodakis, T. Kakardakis, S. Tzortzakou, and V. Tsapara., How to measure the particle ignitability of forest species by TG and LOI, Thermochim. Acta, 477, 16-20 (2008). https://doi.org/10.1016/j.tca.2008.08.003
  15. Y. Sekiguchi, J. S. Frye, and F. Shafizadeh, Structure and formation of cellulosic chars, J. Appl. Polym. Sci., 28, 3513-3525 (1983). https://doi.org/10.1002/app.1983.070281116
  16. B. G. Kim, J. K. Sohng, K. K. Liou, and H. C. Lee, Enhanced fiber structure of carbonized cellulose by purification, Appl. Chem. Eng., 16, 257-261 (2005).
  17. W. E. Hills, Wood and biomass ultrastructure. In: R. P. Overend, T. A. Miline, L. K. Mudge (eds.). Fundamentals of Thermochemical Biomass Conversion, 1-33, Elsevier, London, UK (1985).
  18. M. J. Antal, Biomass Pyrolysis : a Review of the literature. Part I Carbohydrate pyrolysis. In: K. W., Boer, J. A., Duffie (eds.). Advances in Solar Energy, 61-111, American solar energy society, Boulder, USA (1983).
  19. Q. Wu, N. Pan, K. Deng, and D. Pan, Thermogravimetry-mass spectrometry on the pyrolysis process of Lyocell fibers with and without catalyst, Carbohydr. polym., 72, 222-228 (2008). https://doi.org/10.1016/j.carbpol.2007.08.005
  20. C. B. Kim, W. J. Seo, O. D. Kwon, and S. B. Kim, Flame retardancy novel phosphorus flame retardant for polyurethane foam, Appl. Chem. Eng., 22, 540-544 (2011).
  21. D. Cho, H. S. Kang, C. Park, H. S. Ha, B. I. Yoon, and K. S. Kim, Improvement of thermal and mechanical properties of carbon fiber/phenolic composites by using $H_3PO_4$-coated carbon fibers, Polymer(Korea), 20, 650-657 (1996).
  22. C. D. Doyle, Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis, Anal. Chem., 33, 77-79 (1961). https://doi.org/10.1021/ac60169a022
  23. D. W., Van Krevelen, Some basic aspects of flame resistance of polymeric materials, Polymer, 16, 615-620 (1975). https://doi.org/10.1016/0032-3861(75)90157-3

Cited by

  1. SO2 Adsorption Characteristics by Cellulose-Based Lyocell Activated Carbon Fiber on Cu Additive Effects vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1011
  2. Na3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties vol.29, pp.2, 2015, https://doi.org/10.7731/KIFSE.2015.29.2.025
  3. 인계난연제 전처리에 따른 셀룰로스계 중공사 탄소막의 특성분석 vol.56, pp.5, 2014, https://doi.org/10.12772/tse.2019.56.293
  4. 리오셀 섬유의 가교 처리가 탄소 직물 특성에 미치는 영향 vol.23, pp.6, 2014, https://doi.org/10.6108/kspe.2019.23.6.021
  5. Development of Lyocell-Based Graphite Fabric for Aerospace vol.25, pp.4, 2021, https://doi.org/10.6108/kspe.2021.25.4.036