• Title/Summary/Keyword: activation energy($E_a$)

Search Result 490, Processing Time 0.031 seconds

A Study on the Alkali Hydrolysis of PET fabric with Ultrasonic Application(I) - Decomposition Rate Constant and Activation Energy - (초음파를 적용한 PET 직물의 알칼리 가수분해에 관한 연구(I) - 분해속도상수와 활성화 에너지-)

  • 서말용;조호현;김삼수;전재우;이승구
    • Textile Coloration and Finishing
    • /
    • v.14 no.4
    • /
    • pp.214-222
    • /
    • 2002
  • In order to give a silk-like touch to PET fabrics, the PET fabrics were treated with NaOH alkaline solution in various conditions. In alkaline treatment, the liquor flow type pilot weight reduction apparatus with magnetostrictive ultrasonic transducer was used for the study. The weight loss of PET fabrics hydrolyzed in 4% and 6% NaOH solution, at $95^\circ{C}$ and $99^\circ{C}$ for 60min. with ultrasonic application showed 3.7~4.6% higher than that of treated fabric without ultrasonic application. From the difference of specific weight loss, the treatment condition of the maximum of hydrolyzation effect appeared at $95^\circ{C}$ in $4^\circ{C}$ and at $90^\circ{C}$ in 6% NaOH solution, respectively. During the alkali hydrolysis of PET fabrics, the decomposition rate constant(k) increased exponentially with the treatment temperature and were not related with ultrasonic cavitation. The activation energy$(E_a)$ in decomposition of PET fabrics were 21.06kcal/mol with ultrasonic application and 21.10kcal/mol without ultrasonic application. The ultrasonic application gave a little higher value of the activation entropy$(\Delta{S}^\neq)$ and a little lower value of Gibbs free energy$(\Delta{S}^\neq)$ compared with not used ultrasonic apparatus.

Characterization of neutron spectra for NAA irradiation holes in H-LPRR through Monte Carlo simulation

  • Kyung-O Kim;Gyuhong Roh;Byungchul Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4226-4230
    • /
    • 2022
  • The Korea Atomic Energy Research Institute (KAERI) has designed a Hybrid-Low Power Research Reactor (H-LPRR) which can be used for critical assembly and conventional research reactor as well. It is an open tank-in-pool type research reactor (Thermal Power: 50 kWth) of which the most important applications are Neutron Activation Analysis (NAA), Radioisotope (RI) production, education and training. There are eight irradiation holes on the edge of the reactor core: IR (6 holes for RI production) and NA (2 holes for NAA) holes. In order to quantify the elemental concentration in target samples through the Instrumental Neutron Activation Analysis (INAA), it is necessary to measure neutron spectrum parameters such as thermal neutron flux, the deviation from the ideal 1/E epithermal neutron flux distribution (α), and the thermal-to-epithermal neutron flux ratio (f) for the irradiation holes. In this study, the MCNP6.1 code and FORTRAN 90 language are applied to determine the parameters for the two irradiation holes (NA-SW and NA-NW) in H-LPRR, and in particular its α and f parameters are compared to values of other research reactors. The results confirmed that the neutron irradiation holes in H-LPRR are designed to be sufficiently applied to neutron activation analysis, and its performance is comparable to that of foreign research reactors including the TRIGA MARK II.

Effect of Oxygen and Diborane Gas Ratio on P-type Amorphous Silicon Oxide films and Its Application to Amorphous Silicon Solar Cells

  • Park, Jin-Joo;Kim, Young-Kuk;Lee, Sun-Wha;Lee, Youn-Jung;Yi, Jun-Sin;Hussain, Shahzada Qamar;Balaji, Nagarajan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.192-195
    • /
    • 2012
  • We reported diborane ($B_2H_6$) doped wide bandgap hydrogenated amorphous silicon oxide (p-type a-SiOx:H) films prepared by using silane ($SiH_4$) hydrogen ($H_2$) and nitrous oxide ($N_2O$) in a radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) system. We improved the $E_{opt}$ and conductivity of p-type a-SiOx:H films with various $N_2O$ and $B_2H_6$ ratios and applied those films in regards to the a-Si thin film solar cells. For the single layer p-type a-SiOx:H films, we achieved an optical band gap energy ($E_{opt}$) of 1.91 and 1.99 eV, electrical conductivity of approximately $10^{-7}$ S/cm and activation energy ($E_a$) of 0.57 to 0.52 eV with various $N_2O$ and $B_2H_6$ ratios. We applied those films for the a-Si thin film solar cell and the current-voltage characteristics are as given as: $V_{oc}$ = 853 and 842 mV, $J_{sc}$ = 13.87 and 15.13 $mA/cm^2$. FF = 0.645 and 0.656 and ${\eta}$ = 7.54 and 8.36% with $B_2H_6$ ratios of 0.5 and 1% respectively.

Effect of Neutral Salts on the Reactive Dyeing of Silk(I) -Effect of Cations- (중성염이 견의 반응염색에 미치는 영향(I) - 양이온의 영향-)

  • 도성국;박찬헌;권지윤
    • Textile Coloration and Finishing
    • /
    • v.12 no.6
    • /
    • pp.372-379
    • /
    • 2000
  • Four kinds of neutral salts with different cations, LiCl, NaCl, KCl, and CsCl, were added to the dye bath to accurately understand the effect of cations on the reactive dyeing of silk with C. I. Reactive Black 5. The cations of salts added lowered the negative surface potential of the silk, improving equilibrium adsorption and the accessibility of the dyestuff to the fiber greatly and speeding up the dyeing rate in the order of $Li^+>Na^+>K^+>Cs^+$. The activation energy$(E_a)$ for the dyeing was in the order of$Li^+>Na^+>K^+>Cs^+$ but the activation free energy$(\Delta{G}^*)$, or the real energy barrier for the reaction, was in the order of $Li^+>Na^+>K^+>Cs^+$ because the degree of the contribution of E$^{a}$ to the activation entropy$(\Delta{S}^*)$ was $Li^+>Na^+>K^+>Cs^+$. It was found from this result that LiCl had the strongest lowering effect on the negative surface potential of silk. The decrease in $\Delta{S}^*$ should be attributed to the loosely bonded activated complex of dyestufffs, cations and fiber molecules at transition state. It was clarified from the Bronsted equation that salts had the ionic strength effect and the specific salt effect on the reactive dyeing.

  • PDF

Properties of deep levels in In_{1-x}Ga_xP$ (In_{1-x}Ga_xP$의 깊은 준위 특성)

  • 김선태;문동찬
    • Electrical & Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.312-316
    • /
    • 1994
  • In this study, ln$_{1-x}$ Ga$_{x}$P alloy crystal which has different compositions were grown by the temperature gradient solution(TGS) method, and the properties of deep levels were measured in the temperature range of 9OK-450K. We find the four deep levels of E$_{1}$, E$_{2}$(248meV), E$_{3}$(386meV) and E$_{4}$(618meV) in GaP, which has composition of Ga in In$_{1-x}$ Ga$_{x}$P is one, and the trap densities of E$_{3}$ and E4 levels were 7.5*10$^{14}$ cm$^{-3}$ and 9*10$^{14}$ cm$^{-3}$ , respectively. A broad deep level spectra was revealed in In$_{1-x}$ Ga$_{x}$P whose composition of Ga, x, were 0.56 and 0.83, and the activation energy and trap densities were about 430meV and 6*10$^{14}$ cm$^{-3}$ , respectively.ectively.

  • PDF

Isoconversional Cure Kinetics of Modified Urea-Formaldehyde Resins with Additives

  • Park, Byung-Dae
    • Current Research on Agriculture and Life Sciences
    • /
    • v.30 no.1
    • /
    • pp.41-50
    • /
    • 2012
  • As a part of abating formaldehyde emission of urea-formaldehyde resin, this study was conducted to investigate the rmalcure kinetics of both neat and modified urea-formaldehyde resins using differential scanning calorimetry. Neat urea-formaldehyde resins with three different formaldehyde/urea mol ratios (1.4, 1.2 and 1.0) were modified by adding three different additives (sodium bisulfite, sodium hydrosulfite and acrylamide) at two different levels (1 and 3wt%). An isoconversional method at four different heating rates was employed to characterize thermal cure kinetics of these urea-formaldehyde resins to obtain activation energy ($E{\alpha}$) dependent on the degree of conversion (${\alpha}$). The $E{\alpha}$ values of neat urea-formaldehyde resins (formaldehyde/urea = 1.4 and 1.2) consistently changed as the ${\alpha}$ increased. Neat and modified urea-formaldehyde resins of these two F/U mol ratios did show a decrease of the $E{\alpha}$ at the final stage of the conversion while the $E{\alpha}$ of neat urea-formaldehyde resin (formaldehyde/urea = 1.0) increased as the ${\alpha}$ increased, indicating the presence of incomplete cure. However, the change of the $E{\alpha}$ values of all urea-formaldehyde resins was consistent to that of the Ea values. The isoconversional method indicated that thermal cure kinetics of neat and modified urea-formaldehyde resins showed a strong dependence on the resin viscosity as well as diffusion control reaction at the final stage of the conversion.

  • PDF

Synthesis and Cure Behaviors of Diglycidylether of Bisphenol-S Epoxy Resins (Diglycidylether of Bisphenol-S 에폭시 수지의 합성 및 경화거동에 관한 연구)

  • 박수진;김범용;이재락;신재섭
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.501-507
    • /
    • 2002
  • In this work, diglycidylether of bisphenol-S (DGEBS) epoxy resin was prepared by alkaline condensation of bisphenol-S (BPS) with epichlorohydrin (ECH) in the presence of NaOH catalyst. The structure of the synthesized DGEBS epoxy resin was confirmed by IR, NMR spectra, and elemental analysis. The curing reaction and glass transition temperature ($T_g$) of DGEBS epoxy resin cured with phthalic anhydride (PA) and tetrahydrophthalic anhydride (THPA) at curing agents were studied by dynamic differential scanning calorimetry (DSC). The thermal stability of the cured specimen was investigated by thermogravimetric analysis (TGA). As a result, the activation energy ($E_a$) of DGEBS/PA system was higher than that of DGEBS/THPA system, whereas $T_g$, initial decomposed temperature (IDT), and decomposition activation energy ($E_t$) of DGEBS/PA were lower than those of DGEBS/THPA. This was probably due to the fact that the crosslinking density of DGEBS/THPA was increased by ring strain of curing agent.

A STUDY ON THE AGING DEGRADATION OF ETHYLENE-PROPYLENE-DIENE MONOMER (EPDM) UNDER LOCA CONDITION

  • Seo, Yong-Dae;Lee, Hyun-Seon;Kim, Yong-Soo;Song, Chi-Sung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.279-286
    • /
    • 2011
  • The aging degradation and lifetime assessment of a domestic class 1E Ethylene-Propylene-Diene-Monomer (EPDM), which is a popular insulating elastomer for electrical cables in the nuclear power plants, were studied for equipment qualification verification under the Loss of Coolant Accident (LOCA) conditions. The specimens were acceleratively aged, underwent a LOCA environment, as well as tested mechanically, thermo-gravimetrically, and spectroscopically according to the American Society of the Testing of Materials (ASTM) procedures. The tensile test results revealed that the elongation at break gradually decreased with an increasing aging temperature. The lifetime of EPDM aged isothermally at $140^{\circ}C$ was 1,316 hours and reduced to 1,120 hours after experiencing the severe accident test. The activation energies of the elongation reduction were $1.10{\pm}0.196$ eV and $0.93{\pm}0.191$ eV before and after the LOCA condition, respectively. The TGA test results also showed that the activation energy of the aging decomposition decreased from 1.35 eV to 1.02 eV after undergoing the LOCA environment. Although the mechanical property changes were discernibly observed during the aging process, along with the LOCA simulation, the FT-IR analysis showed that the spectroscopic peaks and their intensities did not alter significantly. Therefore, it can be concluded that the degradation of the domestic class 1E EPDM due to aging can be tolerable, even in severe accident conditions such as LOCA, and thus it qualifies as a suitable insulating material for electrical cables in the nuclear power plants.

Optical and Dielectric Properties of Reduced SrTiO3 Single Crystals

  • Kang, Bong-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.278-281
    • /
    • 2011
  • The optical band gap energy for $SrTiO_3$ by reduction at high temperature was 3.15 eV. The reflectivity of reduced $SrTiO_3$ single crystals showed little variation, however, the reflectivity by the reduction condition had no effect. For the phonon mode at about 790 $cm^{-1}$, a blue-shift took place upon $N_2$ reduction and the decreased. However, a red-shift took place upon a $H_2-N_2$ reduction and the increased at the same phonon mode. With decreasing temperature the dielectric constant decreased rapidly. The thermal activation energies were 0.92-1.02 eV.

Characteristics of Silicon Oxide Films Grown by Rapid Thermal Oxidation (급속일산화법에 의한 실리콘 산화막의 특성)

  • 이귀연;양두영;이재용
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.12
    • /
    • pp.59-64
    • /
    • 1991
  • Thin (25-103$\AA$) SiO$_2$ films are grown using the rapid thermal oxidation processing at temperatures of 105$0^{\circ}C$-115$0^{\circ}C$ for 5-30 sec, in order to investigate the characteristics of ultra thin oxide. For measuring the thickness of oxide TEM, ellipsometry, and C-V method which is taken in the condition of small surface band bending are used and compared. When neglecting the small deviation affected by both interface state and moisture charge effect, those three methods described above give similar results. In order to examine the effect of rapid thermal annealing, part of samples are annealed in N$_2$ ambient. MOS capacitors are fabricated and the characteristics of I-V and C-V are measured. Measurements show that the activation energy of initial thickness of oxide grown during the ramp-up time is of 1.125eV and the activation energy of the oxidation rate is of 0.98eV. As oxidation temperature is increased, dielectric breakdown field E$_{BD}$ is decreased due to the increase of fixed charge density N$_f$ However, E$_{BD}$ is shown to be decreased as increasing the thickness of oxide. The increase of N$_f$ in the early stage of thermal annealing results in the decrease of E$_{BD}$.

  • PDF