• Title/Summary/Keyword: activated fly ash cement

Search Result 52, Processing Time 0.027 seconds

Fundamental Characteristics of Activated Fly Ash-Slag Cement Exposed to 5℃ Seawater (5℃ 해수에 노출된 알칼리 활성 플라이애시-슬래그 시멘트의 기초 특성)

  • Kim, Taewan;Jun, Yubin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.302-309
    • /
    • 2019
  • This paper shows an experimental study for fundamental characteristics of alkali activated fly ash-slag cement paste exposed to seawater of 5℃. Fly ash and slag were blended in three different ratios; 6:4, 7:3, and 8:2. Activators (NaOH and Na2SiO3) used 5% of the binder weight. It was shown that as the fly ash substitution rate in creased, compressive strength and density decreased, and water absorption rate increased. The results of X-ray diffraction and thermogravimetry showed that hydration reactants formed in samples did not differ significantly, however, C-S-H gel increased as the slag substitution rate increased. It showed that mechanical properties of fly ash-slag cement pastes under 5℃ seawater condition were affected by the slag substitution rate rather than fly ash.

Strength behaviour and hardening mechanism of alkali activated fly ash Mortars (알카리 활성화에 의한 fly ash 경화체의 강도 발현 메카니즘에 관한 연구)

  • Jo Byung Wan;Moon Rin Gon;Park Seung Kook;Lim Sang Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.321-324
    • /
    • 2004
  • The discharge of fly ash that is produced by coal-fired electric power plants is rapidly increasing in Korea. The utilization of fly ash in the raw materials would contribute to the elimination of an environmental problem and to the development of new high-performance materials. So it is needed to study the binder obtained by chemically activation of pozzolanic materials by means of a substitute for the exiting cement. This paper concentrated on the strength development according to the kind of chemical activators, the curing temperature, the heat curing time. Also Scanning electron microscopy and X-Ray diffraction analysis show what the reaction products of the alkali activated fly ash are.

  • PDF

Properties of the Flowability and Strength of Cementless Alkali-Activated Mortar Using the Mixed Fly Ash and Ground Granulated Blast-Furnace Slag (플라이애쉬와 고로슬래그 미분말의 혼합 사용한 무시멘트 알칼리 활성 모르터의 유동성 및 강도 특성)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.114-121
    • /
    • 2010
  • Portland cement production is under critical review due to high amount of CO2 gas released to the atmosphere. Attempts to increase the utilization of a by-products such as fly ash and ground granulated blast-furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. However, most study deal only with alkali-activated ground granulated blast furnace slag or fly ash, as for the combined use of the both, little information is reported. In this study, we investigated the influence of mixture ratio of fly ash/ blast furnace slag tand curing condition on the flowability and compressive strength of mortar in oder to develop cementless alkali-activated concrete. In view of the results, we found out that the mixture ratio of fly ash/blast furnace slag always results to be significant factors. But the influence of curing temperature in the strength development of mortar is lower than the contribution due to other factors. At the age of 28days, the mixture 50% fly ash and 50% ground granulated blast furnace slag activated with 1:1 the mass ratio of 9M NaOH and sodium silicate, develop compressive strength of about 65 MPa under $20^{\circ}C$ curing.

  • PDF

Effect of Alkaline Activator and Curing Condition on the Compressive Strength of Cementless Fly Ash Based Alkali-Activated Mortar (시멘트를 사용(使用)하지 않은 플라이애시 알칼리 활성(活性) 모르타르의 압축강도(壓縮强度)에 미치는 알칼리 활성제(活性劑) 및 양생조건(養生條件)의 영향(影響))

  • Kang, Hyun-Jin;Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Kim, Sung-Wook;Lee, Jang-Hwa
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.39-50
    • /
    • 2009
  • Portland cement production is under critical review due to high amount of $CO_2$ gas released to the atmosphere. Attempts to increase the utilization of fly ash, a by-products from thermal power plant to partially replace the cement in concrete are gathering momentum. But most of fly ash is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. Instead, the source of material such as fly ash, that are rich in Silicon(Si) and Aluminium(Al), are activated by alkaline liquids to produce the binder. Hence concrete with no cement is effective in the reduction of $CO_2$ gas. In this study, we investigated the influence of the compressive strength of mortar on alkaline activator and curing condition in order to develop cementless fly ash based alkali-activated concrete. In view of the results, we found out that it was possible for us to make alkali-activated mortar with 70MPa at the age of 28days by using alkaline activator manufactured as 1:1 the mass ratio of 9M NaOH and sodium silicate and applying the atmospheric curing after high temperature at $60^{\circ}C$ for 48hours.

Acid Corrosion Resistance and Durability of Alkali-Activated Fly Ash Cement-Concrete (알칼리활성 플라이 애쉬 시멘트-콘크리트의 산저항성 및 내구성)

  • Kang, Hwa-Young;Park, Sang-Sook;Han, Sang-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.61-68
    • /
    • 2008
  • A new cementitious material has been developed, called alkali-activated fly ash cement(AAFC), which is used to produce AAFC-concrete for construction. The effect of acid attack, sodium chloride solution, carbonation, freeze-thaw cycling, and SEM, XRD analysis of the AAFC-concrete prepared using alkali-activated fly ash cement and OPC-concrete were experimentally investigated. It was found that the acid resistance of AAFC-concrete(35 MPa) prepared from alkali-activated fly ash at 85$^{\circ}C$ for 24 hrs is far better than OPC-concrete(35 MPa). Also, the AAFC-concrete(35 MPa) had a similar resistance of OPC-concrete(35 MPa) to attack, such as sodium chloride solution, carbonation and freeze-thaw cycling.

Effect on the Corrosion of Steel by Unburnt Carbon in Fly Ash Cement Mortar (미연탄소분이 플라이 애시 시멘트 모르타르 내 철근의 부식에 미치는 영향)

  • Ha, Tae-Hyun;Bae, Jeong-Hyo;Kim, Dae-Kyeong;Lee, Hyun-Goo;Ha, Yoon-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.338-342
    • /
    • 2007
  • The increase of activated carbon contents in fly ashes accelerate the corrosion of steel embedded in ordinary portland cement(OPC) mortar. Cement losses its identity of colour when the % of carbon is increased. More than 60[%] area was rusted when carbon content is increased beyond 8[%] for the exposure period of one year. Comparable corrosion rate with OPC was obtained up to 6[%] carbon level only. The tolerable limit of replacement for various admixed carbon system under aggressive alternate wetting and drying condition with 3[%] NaCl was found to be 6 to 8[%].

Development of Geopolymer Mortar Based on Fly Ash (플라이애시 기반 지오폴리머 모르타르 개발)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.119-126
    • /
    • 2012
  • Portland cement production-1.5billion tonnes yearly worldwide-contributes substantially to global atmospheric pollution(7% of total of $CO_2$ emissions). Attempts to increase the utilization of fly ash, by-products from thermal power plant to partially replace the cement in concrete are gathering momentum. But most of fly ash is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. Instead, the sources of material such as fly ash, that are rich in Silicon(Si) and Aluminium(Al), are activated by alkaline liquids to produce the binder. Hence concrete with no cement is effect reduction of $CO_2$ gas. In this study, we investigated the influence of the compressive strength of mortar on alkaline activator and curing condition in oder to develop cementless fly ash based alkali-activated concrete. In view of the results, we found out that it was possible for us to make alkali-activated mortar with 70MPa at the age of 28days by using alkaline activator manufactured as 1:1 the mass ratio of 9M NaOH and sodium silicate and applying the atmospheric curing after high temperature at $60^{\circ}C$ for 48hours.

  • PDF

Development of Manufacturing Technology of Non-Sintered Inorganic Using Alkali-activated Fly-ash (알칼리 활성화 플라이애쉬를 사용한 비소성 무기결합재의 제조기술 개발)

  • Jung, Suk-Jo;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.753-756
    • /
    • 2005
  • Recently, the alkali activation of Fly-ash has become a significant field of research because it is possible to use these materials having highly chemical reaction property. Also, the product does not generate CO2 gas, unlike ordinary Portland cement(O.P.C). Therefore, the purpose of this paper is to design for improving mechanical and chemical properties using Fly-ash and Meta-kaolin. And additive(CaO) affected to control the strength behaviors and shrinkage rate.

  • PDF

Effect of the Combined Using of Fly Ash and Blast Furnace Slag as Cementitious Materials on Properties of Alkali-Activated Mortar (결합재(結合材)로 플라이애시와 고로(高爐)슬래그의 혼합사용(混合使用)이 알칼리 활성(活性) 모르타르의 특성(特性)에 미치는 영향(影響))

  • Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Hyun-Jin
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.19-28
    • /
    • 2010
  • Attempts to increase the utilization of a by-products such as fly ash and blast furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. However, most study deal only with alkali-activated blast furnace slag or fly ash, as for the combined use of the both, little information is reported. In this study, we investigated the influence of mixture ratio of fly ash/slag, type of alkaline activator and curing condition on the workability and compressive strength of mortar in oder to develop cementless alkali-activated concrete. In view of the results, we found out that the mixture ratio of fly ash/slag and the type of alkaline activator always results to be significant factors. But the influence of curing temperature in the strength development of mortar is lower than the contribution due to other factors. At the age of 28days, the mixture 50% fly ash and 50% slag activated with 1:1 the mass ratio of 9M NaOH and sodium silicate, develop compressive strength of about 65 MPa under $20^{\circ}C$ curing.

Analysis of Internal Structure in Alkali-Activated Fire Protection Materials Using Fly ash (플라이애시를 활용한 알칼리 활성화 내화성 마감재의 내부구조 분석)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.104-112
    • /
    • 2012
  • This study involves investigating the correlation between variation of internal structure and heating temperature of alkali-activated fire protection materials using fly ash. Dehydration and micro crack thermal expansion occur in cement hydrates of cementitious materials heated by fire. Internal structure difference due to both the dehydration of cement hydrates and pore solution causes and influences changes in the properties of materials. Also, this study is concerned with change in microstructure and dehydration of the alkali-activated fire protection materials at high temperatures. The testing methods of alkali-activated fire protection materials in high temperature properties are make use of TG-DSC and mercury intrusion porosimetry measurements. The study results show that the alkali-activated fire resistant finishing material composed of potassium hydroxide, sodium silicate and fly ash has the high temperature thermal stability. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction.

  • PDF