• 제목/요약/키워드: actin cytoskeleton

검색결과 103건 처리시간 0.02초

T 세포의 Uropod 형성에 있어 Rho A와 F-actin의 역할 (Role of Rho A and F-actin for uropod formation in T lymphocytes)

  • 이종환
    • 생명과학회지
    • /
    • 제17권2호통권82호
    • /
    • pp.192-197
    • /
    • 2007
  • 외부 병원체 침입으로 이동하고 있는 T 세포는 두가지 뚜렷한 형태적인 변화, 즉, leading edge와 uropod를 형성하여 효과적으로 T세포 이동에 영향을 미친다. Uropod 구조물은 이동하는 림프구들의 뒤쪽에서 관찰 할 수 있는 아주 독특한 구조로 CD44, ERM, F-actin과 같은 단백질들이 서로 영향을 미치며 모인다. F-actin cytoskeleton은 세포의 형태를 유지하는 기본적인 틀을 제공한다. Rho A small GTPase는 이러한 cytoskeleton을 재구성하는 organizer로 역할을 한다고 보고되어 왔다. 지금까지, 다양한 경로를 통하여 Rho A가 활성화 되어 진다고 보고 되었다. 본 실험에서 PDZ 도메인이 세포 내부 RHo A에 GDP가 결합된 불활성화 형태의 Rho A를 GTP가 결합된 활성화 형태로 전환한다는 것을 알았고, F-actin cytoskeleton을 재구성 하며, PDZ 도메인을 함유한 세포는 uorpod 구조물이 없어졌으며 세포 이동 속도도 감소하는 것을 알았다. 따라서 Rho A와 F-actin cytoskeleton 사이의 신호 전달 과정이 uropod 형성에 아주 중요한 기능을 할 것이라는 것을 알았다.

Importance of Microglial Cytoskeleton and the Actin-interacting Proteins in Alzheimer's Disease

  • Choi, Go-Eun
    • 대한의생명과학회지
    • /
    • 제26권1호
    • /
    • pp.1-7
    • /
    • 2020
  • Alzheimer's disease (AD) is the most common neurodegenerative disorder and is expected to become more and more widespread as life expectancy increases. New therapeutic target, as well as the identification of mechanisms responsible for pathology, is urgently needed. Recently, microglial actin cytoskeleton has been proposed as a beneficial role in axon regeneration of brain injury. This review highlights in understanding of the characteristics of microglial actin cytoskeleton and discuss the role of specific actin-interacting proteins and receptors in AD. The precise mechanisms and functional aspects of motility by microglia require further study, and the regulation of microglial actin cytoskeleton might be a potential therapeutic strategy for neurological diseases.

Cytochalasin B Modulates Macrophage-Mediated Inflammatory Responses

  • Kim, Mi-Yeon;Kim, Jong-Hoon;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • 제22권4호
    • /
    • pp.295-300
    • /
    • 2014
  • The actin cytoskeleton plays an important role in macrophage-mediated inflammatory responses by modulating the activation of Src and subsequently inducing nuclear factor (NF)-${\kappa}B$ translocation. In spite of its critical functions, few papers have examined how the actin cytoskeleton can be regulated by the activation of toll-like receptor (TLR). Therefore, in this study, we further characterized the biological value of the actin cytoskeleton in the functional activation of macrophages using an actin cytoskeleton disruptor, cytochalasin B (Cyto B), and explored the actin cytoskeleton's involvement in morphological changes, cellular attachment, and signaling events. Cyto B strongly suppressed the TLR4-mediated mRNA expression of inflammatory genes such as cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-${\alpha}$, and inducible nitric oxide (iNOS), without altering cell viability. This compound also strongly suppressed the morphological changes induced by lipopolysaccharide (LPS), a TLR4 ligand. Cyto B also remarkably suppressed NO production under non-adherent conditions but not in an adherent environment. Cyto B did not block the co-localization between surface glycoprotein myeloid differentiation protein-2 (MD2), a LPS signaling glycoprotein, and the actin cytoskeleton under LPS conditions. Interestingly, Cyto B and PP2, a Src inhibitor, enhanced the phagocytic uptake of fluorescein isothiocyanate (FITC)-dextran. Finally, it was found that Cyto B blocked the phosphorylation of vasodilator-stimulated phosphoprotein (VASP) at 1 min and the phosphorylation of heat shock protein 27 (HSP27) at 5 min. Therefore, our data suggest that the actin cytoskeleton may be one of the key components involved in the control of TLR4-mediated inflammatory responses in macrophages.

Chronophin activation is necessary in Doxorubicin-induced actin cytoskeleton alteration

  • Lee, Su Jin;Park, Jeen Woo;Kang, Beom Sik;Lee, Dong-Seok;Lee, Hyun-Shik;Choi, Sooyoung;Kwon, Oh-Shin
    • BMB Reports
    • /
    • 제50권6호
    • /
    • pp.335-340
    • /
    • 2017
  • Although doxorubicin (Dox)-induced oxidative stress is known to be associated with cytotoxicity, the precise mechanism remains unclear. Genotoxic stress not only generates free radicals, but also affects actin cytoskeleton stability. We showed that Dox-induced RhoA signaling stimulated actin cytoskeleton alterations, resulting in central stress fiber disruption at early time points and cell periphery cortical actin formation at a later stage, in HeLa cells. Interestingly, activation of a cofilin phosphatase, chronophin (CIN), was initially evoked by Dox-induced RhoA signaling, resulting in a rapid phosphorylated cofilin turnover leading to actin cytoskeleton remodeling. In addition, a novel interaction between CIN and $14-3-3{\zeta}$ was detected in the absence of Dox treatment. We demonstrated that CIN activity is quite contrary to $14-3-3{\zeta}$ binding, and the interaction leads to enhanced phosphorylated cofilin levels. Therefore, initial CIN activation regulation could be critical in Dox-induced actin cytoskeleton remodeling through RhoA/cofilin signaling.

F-actin cytoskeleton이 Jurkat T 림파구의 microvilli 형성에 미치는 영향 (Involvement of F-Actin Cytoskeleton for Microvilli Formation of Jurkat T Lymphocyte)

  • 이재설;김해영;손기애;김지은;문경미;김광현;최은봉;이종환
    • 생명과학회지
    • /
    • 제21권10호
    • /
    • pp.1401-1406
    • /
    • 2011
  • 면역세포는 외부 병원체 감염, 자연적 순환에 대하여 형태변화를 수반한다. T세포는 염증, 면역 감시, 이동, 그리고 혈관통과를 위해 uropod, filopodia, lamellipodia, 및 microvilli를 생산한다. 짧고 손가락 처럼 생긴 microvilli는 순환하고 있는 포유동물 면역세포 표면을 덮고 있다. 단핵세포와 호중구의 세포표면은 많이 다른데 membrane ruffle을 함유하고 있다. 본 연구는, T세포의 microvilli에 대하여 actin cytoskeleton과의 연관성에 대하여 탐구하였다. Actin 파괴자인 cytochalasin D 처리 후 SEM관찰을 통해서, Jurkat T세포의 microvilli를 보면 빠르게 사라지는 것을 알 수 있었다. 이와는 대조적으로 RhoA의 activator인 PMA는 LIMK와 cofilin 신호 전달을 통해서 microvilli 두께가 확장되는 것을 관찰 하였다. 또한, cytochalasin D 처리는 EL4 T세포의 극성을 사라지게 하는 것으로 보아 F-actin은 T세포의 극성 유지에도 영향을 미친다. 이상의 결과는 Actin cytoskeleton은 T세포에서 microvilli와 극성 유지에 관여하고 있는 것을 제시한다.

Colocalization of ${\alpha}$of Gq Protein with Actin Filaments in L8E63 Cells

  • Chae, Sungsuk;Park, Dongeun
    • Animal cells and systems
    • /
    • 제1권1호
    • /
    • pp.93-98
    • /
    • 1997
  • The present study investigated the cellular localization of a-subunit of Gq (Gaq) protein in developing L8E63, rat skeletal muscle cell line. The colocalization of Gaq with actin cytoskeleton was demonstrated by double-labeling experiments. In mononucleated myoblasts, the immuno-fluorescence staining pattern of Gaq was almost identical with that of F-actin visualized with rhodamine-conjugated phalloidin. However, this colocalization of Gaq with cytoskeleton was not maintained in multinucleated myotubes. The staining pattern of Gaq in myotubes did not match with any specific subcellular structure, but appeared as a uniformly distributed diffuse staining throughout the whole cell surface. Interestingly, change in the expression level of Gaq was not detected during myoblast differentiation, suggesting that actin-associated Gaq protein might dissociate from the cytoskeleton as cells differentiate. Immunocytochemical experiments using specific antibodies directed against several G proteins indicated that the subcellular localizations of Gai1, Gai2, Gai3, and Gao were different from those obtained with Gaq.

  • PDF

Regulation of Hippo signaling by actin remodeling

  • Seo, Jimyung;Kim, Joon
    • BMB Reports
    • /
    • 제51권3호
    • /
    • pp.151-156
    • /
    • 2018
  • The Hippo signaling pathway controls nuclear accumulation and stability of the transcriptional coregulator YAP and its paralog TAZ. The activity of Hippo-YAP signaling is influenced not only by biochemical signals, but also by cell shape and mechanical tension transmitted through cell-cell junctions and cell-matrix adhesions. Data accumulated thus far indicates that the actin cytoskeleton is a key mediator of the regulation of Hippo-YAP signaling by means of a variety of biochemical and mechanical cues. In this review, we have outlined the role of actin dynamics and actin-associated proteins in the regulation of Hippo-YAP signaling. In addition, we discuss actin-mediated regulation of YAP/TAZ activity independent of the core Hippo kinases MST and LATS. Although our understanding of the link between Hippo-YAP signaling and the actin cytoskeleton is progressing rapidly, many open questions remain.

Interaction of Nonreceptor Tyrosine-Kinase Fer and p120 Catenin Is Involved in Neuronal Polarization

  • Lee, Seung-Hye
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.256-262
    • /
    • 2005
  • The neuronal cytoskeleton is essential for establishment of neuronal polarity, but mechanisms controlling generation of polarity in the cytoskeleton are poorly understood. The nonreceptor tyrosine kinase, Fer, has been shown to bind to microtubules and to interact with several actin-regulatory proteins. Furthermore, Fer binds p120 catenin and has been shown to regulate cadherin function by modulating cadherin-${\beta}$-catenin interaction. Here we show involvement of Fer in neuronal polarization and neurite development. Fer is concentrated in growth cones together with cadherin, ${\beta}$-catenin, and cortactin in stage 2 hippocampal neurons. Inhibition of Fer-p120 catenin interaction with a cell-permeable inhibitory peptide (FerP) increases neurite branching. In addition, the peptide significantly delays conversion of one of several dendrites into an axon in early stage hippocampal neurons. FerP-treated growth cones also exhibit modified localization of the microtubule and actin cytoskeleton. Together, this indicates that the Fer-p120 interaction is required for normal neuronal polarization and neurite development.

Cytochalasin D-induced Matrix Metalloproteinase-2 Regulates Articular Chondrocytes Dedifferentiation

  • Choi, In-Kyu;Yu, Seon-Mi;Kim, Song-Ja
    • 대한의생명과학회지
    • /
    • 제14권3호
    • /
    • pp.179-186
    • /
    • 2008
  • Matrix metalloproteinases (MMPs), also designated matrixins, hydrolyze components of the extracellular matrix. These proteinases playa central role in many biological processes, such as embryogenesis, normal tissue remodeling, wound healing, and angiogenesis, and in diseases such as atheroma, arthritis, cancer, and tissue ulceration. In previous data, disruption of the actin cytoskeleton by cytochalasin D (CD) inhibited NO-induced apoptosis, dedifferentiation, cyclooxygenase (COX)-2 expression, and prostaglandin $E_2$ production in chondrocytes cultured on plastic or during cartilage explants culture. In this study, we investigated the effects of the actin cytoskeleton architecture on MMP-2 expression and dedifferentiation by CD in rabbit articular chondrocytes. Rabbit articular chondrocytes were prepared from cartilage slices of 2-weeks-old New Zealand white rabbits by enzymatic digestion. CD was used as a disruptor of actin cytoskeleton. In this experiments measuring CD dose response, primary chondrocytes were treated with various concentrations of CD for 24h. The actin disruption was determined by immunostaining. MMP-2 expression levels were determined by immunoblot analysis and Reverse transcriptase-Polymerase chain reaction (RT-PCR) and MMP-2 activity was determined by gelatin zymography. We found that cell morphological change and up-regulation of MMP-2 expression by CD as determined via immunostaining, gelatin zymography and immunoblotting. Moreover, CD induced MMP-2 transcription was detected by RT-PCR. Also, CD-induced type II collagen expression was inhibited by MMP-2 inhibitor I treatment. Our results indicate that CD up-regulated MMP-2 activation causes dedifferentiation of articular chondrocyte.

  • PDF

Expression and Functional Analysis of cofilin1-like in Craniofacial Development in Zebrafish

  • Jin, Sil;Jeon, Haewon;Choe, Chong Pyo
    • 한국발생생물학회지:발생과생식
    • /
    • 제26권1호
    • /
    • pp.23-36
    • /
    • 2022
  • Pharyngeal pouches, a series of outgrowths of the pharyngeal endoderm, are a key epithelial structure governing facial skeleton development in vertebrates. Pouch formation is achieved through collective cell migration and rearrangement of pouch-forming cells controlled by actin cytoskeleton dynamics. While essential transcription factors and signaling molecules have been identified in pouch formation, regulators of actin cytoskeleton dynamics have not been reported yet in any vertebrates. Cofilin1-like (Cfl1l) is a fish-specific member of the Actin-depolymerizing factor (ADF)/Cofilin family, a critical regulator of actin cytoskeleton dynamics in eukaryotic cells. Here, we report the expression and function of cfl1l in pouch development in zebrafish. We first showed that fish cfl1l might be an ortholog of vertebrate adf, based on phylogenetic analysis of vertebrate adf and cfl genes. During pouch formation, cfl1l was expressed sequentially in the developing pouches but not in the posterior cell mass in which future pouch-forming cells are present. However, pouches, as well as facial cartilages whose development is dependent upon pouch formation, were unaffected by loss-of-function mutations in cfl1l. Although it could not be completely ruled out a possibility of a genetic redundancy of Cfl1l with other Cfls, our results suggest that the cfl1l expression in the developing pouches might be dispensable for regulating actin cytoskeleton dynamics in pouch-forming cells.