• Title/Summary/Keyword: actin binding

Search Result 89, Processing Time 0.022 seconds

Interaction between a Blood Vessel-Inducing Protein Angiogenin and Its Binding Protein Actin

  • Chang, Soo-Ik;Paik, Seung-Bum;So, Seung-Ho;Ahn, Byung-Cheol
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.353-358
    • /
    • 1996
  • Bovine angiogenin (bAng) is a potent blood vessel inducing protein purified from cow In ilk. fluorescence spectroscopy has been used to study the interaction of bAng with actin in 50 mM Tris-HCl pH 7.5, and 1 mM $CaCl_2$ at $25^{\circ}C$. Actin contains four tryptophans but bAng contains no tryptophans. A 50% decrease in intrinsic fluorescence accompanied formation of the bAng/actin complex. By contrast, the interaction of RNase A, a homologous protein to bAng, with actin results in about 10% quenching of the fluorescence. Fluorescence titration experiments were performed by adding increasing concentrations of bAng (0~1.0 ${\mu}M$) to a constant concentration of actin (0.1 ${\mu}M$), and the dissociation constant $K_d$ for the bAng/actin complex and the stoichiometry n were measured as $20{\pm}1$ nM and $1.0{\pm}0.1$ respectively. These results suggest that the interaction between bAng with actin is specific and that quenching of actin fluorescence has occurred in the bAng/actin complex. The bAng binding sites of actin are discussed in the results of this study, and we propose that Trp-80 in the small domain of bovine actin is responsible for the bAng/actin binding.

  • PDF

The Carboxyl Terminal Amino Acid Residues Glutamine276-Threonine277 Are Important for Actin Affinity of the Unacetylated Smooth ${\alpha}$-Tropomyosin

  • Cho, Young-Joon
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.531-536
    • /
    • 2000
  • Tropomyosin (TM) is an important actin binding protein involved in regulation of muscle contraction. Unacetylated striated tropomyosin failed to bind to actin whereas unacetylated smooth tropomyosin bound well to actin. It has been demonstrated that high actin affinity of unacetylated ${\alpha}-tropomyosin$ was ascribed to the carboxyl terminal amino acid residues. In order to define the role of the carboxyl terminal residues of tropomyosin molecule on actin binding, two mutant tropomyosins were constructed. TM11 is identical to the striated tropomyosin except that the carboxyl terminal last three amino acids was replaced with $^{282}NNM^{284}$ whereas in TM14 $^{276}HA^{277}$ was substituted with smooth specific $^{276}QT^{277}$. TM11 and TM14 were overproduced in Escherichia coli and analyzed for actin affinity. The apparent binding constants (Kapp) of unacetylated tropomyosins were $2.2{\times}10^6M^{-1}$ for sm9, $1.03{\times}10^6M^{-1}$ for TM14, $0.19{\times}10^6M^{-1}$ for TM11, $>0.1{\times}10^6M^{-1}$ for striated, respectively. This result indicated that higher actin affinity of the unacetylated smooth tropomyosin was primarily attributed to the presence of QT residues in the smooth sequence. In case of the Ala-Ser (AS) dipeptide extension of the amino terminus of tropomyosin, Kapp were $21.1{\times}10^6M^{-1}$ for AS-sm9, $8.0{\times}10^6M^{-1}$ for AS-11, $4.7{\times}10^6M^{-1}$ for AS-14, $3.8{\times}10^6M^{-1}$ for AS-striated. AS-TM11 showed considerably higher actin affinity than AS-TM14, implying that interaction of Ala-Ser of the amino terminus with the carboxyl terminal residues. Since Kapp of AS-TM11 was significantly lower than that of AS-sm9, the presence of QT might be required for restoration of high actin affinity of the smooth ${\alpha}-tropomyosin$. These results suggested that the carboxyl terminal amino acid residues Glutamine275-Threonine276 are important for actin affinity of the recombinant smooth ${\alpha}-tropomyosin$, particularly of unacetylated smooth ${\alpha}-tropomyosin$.

  • PDF

Molecular and biochemical characterization of a novel actin bundling protein in Acanthamoeba

  • Alafag Joanna It-itan;Moon Eun-Kyung;Hong Yeon-Chul;Chung Dong-Il;Kong Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.4 s.140
    • /
    • pp.331-341
    • /
    • 2006
  • Actin binding proteins play key roles in cell structure and movement particularly as regulators of the assembly, stability and localization of actin filaments in the cytoplasm. In the present study, a cDNA clone encoding an actin bundling protein named as AhABP was isolated from Acanthamoeba healyi, a causative agent of granulomatous amebic encephalitis. This clone exhibited high similarity with genes of Physarum polycephalum and Dictyostelium discoideum, which encode actin bundling proteins. Domain search analysis revealed the presence of essential conserved regions, i.e., an active actin binding site and 2 putative calcium binding EF-hands. Transfected amoeba cells demonstrated that AhABP is primarily localized in phagocytic cups, peripheral edges, pseudopods, and in cortical cytoplasm where actins are most abundant. Moreover, AhABP after the deletion of essential regions formed ellipsoidal inclusions within transfected cells. High-speed co-sedimentation assays revealed that AhABP directly interacted with actin in the presence of up to $10{\mu}M$ of calcium. Under the electron microscope, thick parallel bundles were formed by full length AhABP, in contrast to the thin actin bundles formed by constructs with deletion sites. In the light of these results, we conclude that AhABP is a novel actin bundling protein that is importantly associated with actin filaments in the cytoplasm.

A Study On Structure Change of Binding Actin and Moysin On The Contracting Muscle Membrane (수축중인 근육막에서 actin과 myosin 결합의 구조변화에 관한 연구)

  • Kim, Duck-Sool;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.380-387
    • /
    • 2008
  • The effects of the applied stretch and MgADP binding on the structure of the actin and myosin cross-bridges in rabbit fibers in the rigor state have been investigatedwith improved resolution by x-ray diffraction using synchrotron radiation. To clarify the structure of the ATP hydrolysis intermediates formed by actin and myosin cross-bridges,the effects of various phosphate analogs in the of MgADP on the structure of the thin and thick filaments in glycerinated rabbit muscle fibers in the rigor state investigated by x-ray diffraction with a short exposure time using synchrotron radiation. These results strongly suggest that when MgADP and phosphate analogs such as metallofluorides(BeF3 and AlF4)and vanadate(VO4(Vi)) were added the rigor fibers in the presence of the ATP-depletion backup system, the intensities of the actin-based layer lines were markedly weakened. We found that the intensity of the 14.5 nm-based meridional reflections increase by 20-50% when phosphate analogs such as metallofluorides(BeF3 and AlF4) and vanadate(VO4(Vi)) was added to the rigor muscle.

TAGLN2-mediated actin stabilization at the immunological synapse: implication for cytotoxic T cell control of target cells

  • Na, Bo-Ra;Jun, Chang-Duk
    • BMB Reports
    • /
    • v.48 no.7
    • /
    • pp.369-370
    • /
    • 2015
  • Actin dynamics is critical for the formation and sustainment of the immunological synapse (IS) during T cell interaction with antigen-presenting cells (APC). Thus, many actin regulating proteins are involved in spatial and temporal actin remodeling at the IS. However, little is known whether or how actin stabilizing protein controls IS and the consequent T cell functions. TAGLN2 − an actin-binding protein predominantly expressed in T cells − displays a novel function to stabilize cortical F-actin, thereby augmenting F-actin contents at the IS, and acquiring leukocyte function-associated antigen-1 activation following T cell activation. TAGLN2 also competes with cofilin to protect F-actin in vitro and in vivo. During cytotoxic T cell interaction with cancer cells, the expression level of TAGLN2 at the IS correlates with the T cell adhesion to target cancer cells and production of lytic granules such as granzyme B and perforin, thus expressing cytotoxic T cell function. These findings identify a novel function for TAGLN2 as an actin stabilizing protein that is essential for stable immunological synapse formation, thereby regulating T cell immunity. [BMB Reports 2015; 48(7): 369-370]

Importance of Microglial Cytoskeleton and the Actin-interacting Proteins in Alzheimer's Disease

  • Choi, Go-Eun
    • Biomedical Science Letters
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Alzheimer's disease (AD) is the most common neurodegenerative disorder and is expected to become more and more widespread as life expectancy increases. New therapeutic target, as well as the identification of mechanisms responsible for pathology, is urgently needed. Recently, microglial actin cytoskeleton has been proposed as a beneficial role in axon regeneration of brain injury. This review highlights in understanding of the characteristics of microglial actin cytoskeleton and discuss the role of specific actin-interacting proteins and receptors in AD. The precise mechanisms and functional aspects of motility by microglia require further study, and the regulation of microglial actin cytoskeleton might be a potential therapeutic strategy for neurological diseases.

The Role of Abp140p in Actin Dynamics of Budding Yeast

  • Lim, Bum-Soon;Lee, Yong-Keun;Pon, Liza A.;Yang, Hyeong-Cheol
    • International Journal of Oral Biology
    • /
    • v.30 no.1
    • /
    • pp.17-22
    • /
    • 2005
  • In the previous studies of Saccharomyces cerevisiae, Abp140p (actin binding protein 140) fused to GFP has been only a protein that can label actin cables of yeast cells so far. However, the role of Abp140p in actin dynamics was remained elusive. In this study, the function of Abp140p was investigated with a deletion mutant and overexpression of GFP fused Abp140p. The deletion mutant was slightly more susceptible to Latrunculin-A (Lat-A), an actin-monomer sequestering agent, than wild type, although no significant deformation of actin structures was caused by ABP 140 deletion. Overexpression of Abp140p-GFP retarded cell growth, and produced thick and robust actin cables. Lat-A was not able to destabilize the thick actin cables, which suggests that actin dynamics was compromised in the cells with surplus of Abp140p. Therefore, Abp140p seems to stabilize actin cables together with other bundling proteins. Recently, actin cable dynamics of budding yeast was found to have a resemblance to that of filopodial tip of cultured mammalian cells. Retrograde movement of actin cables from buds to mother cells indicated local generation of the cable at bud sites. By using Abp140p-GFP, we traced the steps in the generation of a new actin cable after elimination of old cables by sodium azide. Before the appearance of a new actin cable, Abp140p-GFP concentrated in buds and disappeared, as mother cells became abundant in actin cables. Our observations provide a direct evidence of actin cable formation at buds of budding cells.

Neuronal function and dysfunction of CYFIP2: from actin dynamics to early infantile epileptic encephalopathy

  • Zhang, Yinhua;Lee, Yeunkum;Han, Kihoon
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.304-311
    • /
    • 2019
  • The cytoplasmic FMR1-interacting protein family (CYFIP1 and CYFIP2) are evolutionarily conserved proteins originally identified as binding partners of the fragile X mental retardation protein (FMRP), a messenger RNA (mRNA)-binding protein whose loss causes the fragile X syndrome. Moreover, CYFIP is a key component of the heteropentameric WAVE regulatory complex (WRC), a critical regulator of neuronal actin dynamics. Therefore, CYFIP may play key roles in regulating both mRNA translation and actin polymerization, which are critically involved in proper neuronal development and function. Nevertheless, compared to CYFIP1, neuronal function and dysfunction of CYFIP2 remain largely unknown, possibly due to the relatively less well established association between CYFIP2 and brain disorders. Despite high amino acid sequence homology between CYFIP1 and CYFIP2, several in vitro and animal model studies have suggested that CYFIP2 has some unique neuronal functions distinct from those of CYFIP1. Furthermore, recent whole-exome sequencing studies identified de novo hot spot variants of CYFIP2 in patients with early infantile epileptic encephalopathy (EIEE), clearly implicating CYFIP2 dysfunction in neurological disorders. In this review, we highlight these recent investigations into the neuronal function and dysfunction of CYFIP2, and also discuss several key questions remaining about this intriguing neuronal protein.

MS2 Labeling of Endogenous Beta-Actin mRNA Does Not Result in Stabilization of Degradation Intermediates

  • Kim, Songhee H.;Vieira, Melissa;Kim, Hye-Jin;Kesawat, Mahipal Singh;Park, Hye Yoon
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.356-362
    • /
    • 2019
  • The binding of MS2 bacteriophage coat protein (MCP) to MS2 binding site (MBS) RNA stem-loop sequences has been widely used to label mRNA for live-cell imaging at single-molecule resolution. However, concerns have been raised recently from studies with budding yeast showing aberrant mRNA metabolism following the MS2-GFP labeling. To investigate the degradation pattern of MS2-GFP-labeled mRNA in mammalian cells and tissues, we used Northern blot analysis of ${\beta}$-actin mRNA extracted from the Actb-MBS knock-in and $MBS{\times}MCP$ hybrid mouse models. In the immortalized mouse embryonic cell lines and various organ tissues derived from the mouse models, we found no noticeable accumulation of decay products of ${\beta}$-actin mRNA compared with the wild-type mice. Our results suggest that accumulation of MBS RNA decay fragments does not always happen depending on the mRNA species and the model organisms used.

A Maternal Transcription Factor, Junction Mediating and Regulatory Protein is Required for Preimplantation Development in the Mouse

  • Lin, Zi-Li;Li, Ying-Hua;Jin, Yong- Xun;Kim, Nam-Hyung
    • Development and Reproduction
    • /
    • v.23 no.3
    • /
    • pp.285-295
    • /
    • 2019
  • Junction-mediating and regulatory protein (JMY) is a regulator of both transcription and actin filament assembly. The actin-regulatory activity of JMY is based on a cluster of three actin-binding Wiskott-Aldrich syndrome protein homology 2 (WH2) domains that nucleate actin filaments directly and promote nucleation of the Arp2/3 complex. In addition to these activities, we examined the activity of JMY generation in early embryo of mice carrying mutations in the JMY gene by CRISPR/Cas9 mediated genome engineering. We demonstrated that JMY protein shuttled expression between the cytoplasm and the nucleus. Knockout of exon 2, CA (central domain and Arp2/3-binding acidic domain) and NLS-2 (nuclear localization signal domain) on the JMY gene by CRISPR/Cas9 system was effective and markedly impeded embryonic development. Additionally, it impaired transcription and zygotic genome activation (ZGA)-related genes. These results suggest that JMY acts as a transcription factor, which is essential for the early embryonic development in mice.