• Title/Summary/Keyword: acrylic rubber

Search Result 61, Processing Time 0.018 seconds

Mechanical Properties of Polyurethane Foam Prepared from Prepolymer with Resin Premix (Prepolymer와 Resin Premix로 부터 제조된 Polyurethane Foam의 기계적 성질)

  • Kim, Tae Sung;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.241-248
    • /
    • 2013
  • Polyester type polyurethane foam has low hydrolysis resistance. It was overcome with addition of acrylic polyol by quasi prepolymer method. Tensile strength and hardness of polyurethane foam contained acrylic polyol was increased with increasing of acrylic polyol contents. But split tear strength and tear strength was slightly changed. Hydrolysis resistance of polyurethane foam was measured by loss % of tensile strength. It was improved with increasing of acrylic polyol contents from 25.5g to 102g.

A Study on the resistance of acrylic rubber pressure sensitive adhesives with curing agents and tackifiers (경화제와 점착부여제가 아크릴 고무점착제의 내열성에 미치는 영향)

  • Nam, Kyong min;Kim, Chul Yong;Kim, Eun Seon;Kim, Kwang-Je;Choi, Woo Jin;Kim, Ki-Tae;Park, Myung-Chul
    • Journal of Adhesion and Interface
    • /
    • v.18 no.4
    • /
    • pp.166-170
    • /
    • 2017
  • In this study, acrylic rubber pressure sensitive adhesives was polymerized with 2-ethylhexyl acrylate, styrene, butadiene, 2-hydroxyethyl acrylate, and acrylic acid by controlling the initiator content. The initial tackiness, peel strength, holding power, and heat resistance of the PSAs were investigated by changing the content of tackifier and curing agent. The results showed that the initial tackiness and peel strength increased as the content of tackifier increased, whereas the holding power decreased. Also, the results exhibited that that the initial tackiness, peel strength, and heat resistance decreased as the content of curing agent increased, whereas the holding power and decreased.

Effect of Cross-Linking Characteristic on the Physical Properties and Storage Stability of Acrylic Rubber

  • Seong-Guk Bae;Min-Jun Gim;Woong Kim;Min-Keun Oh;Ju-Ho Yun;Jung-Soo Kim
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.136-141
    • /
    • 2023
  • Polyacrylic rubber (ACM) is well known for its excellent heat resistance and chemical stability. Additionally, its performance can be readily manipulated by modifying its functional groups, rendering it highly attractive to various industries. However, extreme climate changes have necessitated an expansion of the operating temperature range and lifespan of ACM products. This requires the optimization of both the compounding process and functional-group design. Hence, we investigated the relationship between the cross-linking system and mechanical properties of an ACM with a carboxylic cure site. The crosslink density is determined by chemical kinetics according to the structure of additives, such as diamine crosslinkers and guanidine accelerators. This interaction enables the manipulation of the scotch time and mechanical properties of the compound. This fundamental study on the correlation analysis between cross-linking systems, physical properties, and storage stability can provide a foundation for material research aimed at satisfying the increasingly demanding service conditions of rubber products.

PC/ASA blends having enhanced interfacial and mechanical properties

  • Kang, M.S.;Kim, C.K.;Lee, J.W.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Blend of bisphenol-A polycarbonate (PC) and (acrylonitrile-styrene-acrylic rubber) terpolymer (ASA) having excellent balance in the interfacial properties and mechanical strength was developed for the automobile applications. Since interfacial adhesion between PC and styrne-acrylonitrile copolymer (SAN) matrix of ASA is not strong enough, two different types of compatibilizers, i.e, diblock copolymer composed of tetramethyl polycarbonate (TMPC) and SAN (TMPC-b-SAN) and poly(methyl methacrylate) (PMMA) were examined to improve interfacial adhesion between PC and SAN. TMPC-b-SAN was more effective than PMMA in increasing interfacial adhesion between PC and SAN matrix of ASA (or weld-line strength of PC/ASA blend). When blend composition was fixed, PC/ASA blends exhibited similar mechanical properties except impact strength and weld-line strength. Impact strength of PCI ASA blend at low temperature was influenced by rubber particle size and its morphology. PC/ASA blends containing commercially available PMMA as compatibilizer also exhibited excellent balance in mechanical properties and interfacial adhesion.

The Preparation and Adhesion Performances of Transparent Acrylic Pressure Sensitive Adhesives Containing Acrylamide Monomer for Optical Applications

  • Baek, Seung-Suk;Jang, Se-Jung;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.51 no.3
    • /
    • pp.181-187
    • /
    • 2016
  • Transparent acrylic pressure sensitive adhesives (PSAs) were successfully prepared by photopolymerization with 2-ethylhexyl acrylate (2-EHA) and 2-hydroxyethyl acrylate (2-HEA) as a default constituent and with isobornyl acrylate (IBOA) and N-(isobutoxymethyl)acrylamide (IBMA) as a variable constituent. The IBMA mole fraction effect in the acrylic PSAs was investigated on adhesion performances and the optical properties including 85/85 test as well as the characteristics (solid content, and molecular weight) of the PSA syrups were also investigated. Regardless increasing the IBMA mole fraction in the acrylic PSAs, the acrylic PSAs exhibited almost the same adhesion performance such as $180^{\circ}$ peel strength (~4.0 kg/25 mm) and probe tack (~0.27 kg). All the acrylic PSA samples also showed high transmittance (more than 91%), low haze (less than 1.0%) and low color-difference (less than 1.0) before and after 85/85 test.

Production of 3-Hydroxypropionic Acid from Acrylic Acid by Newly Isolated Rhodococcus erythropolis LG12

  • Lee, Sang-Hyun;Park, Si-Jae;Park, Oh-Jin;Cho, Jun-Hyeong;Rhee, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.474-481
    • /
    • 2009
  • A novel microorganism, designated as LG12, was isolated from soil based on its ability to use acrylic acid as the sole carbon source. An electron microscopic analysis of its morphological characteristics and phylogenetic classification by 16S rRNA homology showed that the LG12 strain belongs to Rhodococcus erythropolis. R. erythropolis LG12 was able to metabolize a high concentration of acrylic acid (up to 40 g/l). In addition, R. erythropolis LG12 exhibited the highest acrylic acid-degrading activity among the tested microorganisms, including R. rhodochrous, R. equi, R. rubber, Candida rugosa, and Bacillus cereus. The effect of the culture conditions of R. erythropo/is LG12 on the production of 3-hydroxypropionic acid (3HP) from acrylic acid was also examined. To enhance the production of 3HP, acrylic acid-assimilating activity was induced by adding 1 mM acrylic acid to the culture medium when the cell density reached an $OD_{600}$ of 5. Further cultivation of R. erythropo/is LG 12 with 40 g/l of acrylic acid resulted in the production of 17.5 g/l of 3HP with a molar conversion yield of 44% and productivity of 0.22 g/l/h at $30^{\circ}C$ after 72 h.

The Effect of Various Hydrophilic Acrylic Comonomers on Soap-Free Emulsion Polymerization of Styrene-Butadiene Rubber (Styrene-Butadiene 무유화제 유화공중합에서의 아크릴계 친수성 공단량체의 영향)

  • Chung, Huey-Sil;Lee, Chang-Sung;Kim, Byung-Kyu;Shin, Young-Jo
    • Elastomers and Composites
    • /
    • v.28 no.4
    • /
    • pp.267-273
    • /
    • 1993
  • A number of hydrophilic acrylic comonomers were incorporated into styrene-butadiene soap-free emulsion polymerization. It was found that reaction rate decreased according to : AN>AA>MMA>EA>IA>AAM>MA>HEMA. It was also observed that reaction rate increased with decreasing H-bonding factor contribution to the solubility parameter of the hydrophilic comonoer. The SBR latexes were very monodisperse with the particle size distribution of $1.03{\times}1.12$. Since growth rate is proportional to polymerization time, the difference in conversion rates between various comonomers was resulted from the particle number density of SBR latexes for the various hydrophilic comonomers. It was also found that the colloidal stability of the latexes was excellent because no external emulsifier was incorporated.

  • PDF

Synthesis and Antimicrobial Properties of the Chitosan Derivatives

  • Lee, Eun Kyoung;Kim, You Kyoung
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.254-263
    • /
    • 2021
  • In this study, chitosan obtained after varying extents of deacetylation (i.e., 10%, 30%, and 47%) was employed to introduce antibacterial properties to chitin. The deacetylation reaction completion, wherein the amino group content of chitin was reduced, was ascertained from the FT-IR and NMR analyses. The 47%-deacetylated chitosan exhibited superior antibacterial properties against Bacillus in a disk diffusion test. To further improve these properties, chitosan derivatives were grafted by acrylic acid and acrylamide. The varying concentrations of carboxyl groups, primary amines, and -CH2-CH2- with increasing acrylic acid and acrylamide contents were determined by FT-IR and NMR analyses. The enhanced antibacterial properties of the chitosan derivatives, owing to the increased acrylic acid and acrylamide contents, were revealed by the disk diffusion test. In particular, the derivatives with 1.3% acrylic acid and acrylamide showed the highest antibacterial activity, the bacterial reduction rate against Staphylococcus aureus and Escherichia coli being 99.9%, as observed through the ASTM E2149 standard test.

Polyether Ester by Rubber Content and Rubber According to the Type of Dynamic Vulcanized Properties (TPEE) (폴리에스터계 동적가교물의 고무함량 및 고무종류에 따른 물성)

  • Yun, Ju-Ho;Yun, Jung-Hwan;Ha, Seong-Mun;Kim, Il;Sim, Sang-Eun
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.67-75
    • /
    • 2013
  • E-TPE (Engineering Thermoplastic Polyether Ester) was Ester Elastomer with functional groups as recycling and fast processability. In addition, if the car's lightweight enough to highlight eco-friendly materials that help to improve fuel economy has become. Have all the attributes of the rubber and engineering plastics E-TPE the available temperature area is spacious, heat resistance and oil resistance is excellent but getting attention as a new material in the field of auto parts in the field of electrical and electronic domestic depends entirely on imports by the lack of core technology and has been research and development is urgently needed. In this study, the hard segments, polyester (TPEE) as the base soft elastomers of the segments Ethylen-prophylene-Copolymer and CSM (Choloro sulphonated polyethylene Rubber), VAMAC (Ethylene Acrylic Rubber), NBR (Acrylonitrin Butadiene Rubber), 1, 3-Phenylene-bisoxazoline is dealing with Dynamic Vulcanized by content and added rubber properties, thermal variation observed. As a result, the properties of the dynamic vulcanization with NBR compared to other rubber heat resistance and oil resistance is on the increase.

Improvement of Insulation Performance of Vehicle Rubber Hoses (자동차용 고무호스의 진동 절연성능 향상에 관한 연구)

  • Jung, Heon-Seob;Min, Byung-Kwon;Lee, Seong-Hoon;Woo, Hee-Soo;Park, Hyun-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.837-844
    • /
    • 2012
  • We considered an approach in terms of materials for improvement of insulation performance of vehicle rubber hoses. Ethylene propylene rubber(EPDM) for heater hoses in cooling system and acrylic rubber(AR) for intercooler hose in intake system were chosen for mixing for the vibration and noise performance. We modified EPDM and AR through changing compound of base polymer, reinforcement fillers and additives. Dynamic mechanical analysis(DMA) was used to measure viscoelastic properties such as shear modulus and loss factor($tan{\delta}$). Vehicle acceleration test was also conducted to observe indoor changes in insulation performance of hoses.