• Title/Summary/Keyword: acrylate copolymer

Search Result 95, Processing Time 0.024 seconds

Thermodynamic Properties and Self Diffusions from Rheological Parameters of Eyring-Halsey Model (Eyring-Halsey 모델의 유동파라메타로부터 열역학 성질과 자체 확산)

  • Kim, Nam Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.3
    • /
    • pp.251-257
    • /
    • 2014
  • The stress relaxation of poly(methyl acrylate)-poly(acrylonitrile) copolymer samples were carried out in air and distilled water at various temperatures using the tensile tester with the solvent chamber. The rheological parameters were obtained by applying the experimental stress relaxation curves to the theoretical equation of the Eyring-Halsey non-Newtonian model. The self diffusion, hole volume, viscosities, and thermodynamic parameters of copolymer samples were calculated from rheological parameters and crystallite size in order to study of flow segments in amorphous region. It was observed that the rheological parameters of these copolymer samples are directly related to the self diffusion, hole volume, viscosities, and thermodynamic parameters of flow segments.

Preparation and Characterization of Poly(butyl acrylate)/Poly(methyl methacrylate) Composite Latex by Seeded Emulsion Polymerization

  • Ju, In-Ho;Hong, Jin-Ho;Park, Min-Seok;Wu, Jong-Pyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.131-136
    • /
    • 2002
  • As model waterborne acrylic coatings, mono-dispersed poly(butyl acrylate-methyl methacrylate) copolymer latexes of random copolymer and core/shell type graft copolymer were prepared by seeded multi-staged emulsion polymerization with particle size of $180{\sim}200$ nm using semi-batch type process. Sodium lauryl sulfate and potassium persulfate were used as an emulsifier and an initiator, respectively. The effect of particle texture including core/shell phase ratio, glass transition temperature and crosslinking density, and film forming temperature on the film formation and final properties of film was investigated using SEM, AFM, and UV in this study. The film formation behavior of model latex was traced simultaneously by the weight loss measurement and by the change of tensile properties and UV transmittance during the entire course of film formation. It was found that the increased glass transition temperature and higher crosslinking degree of latex resulted in the delay of the onset of coalescence of particles by interdiffusion during film forming process. This can be explained qualitatively in terms of diffusion rate of polymer chains. However, the change of weight loss during film formation was insensitive to discern each film forming stages-I, II and III.

Biodegradation Characteristics of Starch-Filled Waterborne Acrylate Film (전분을 충전한 수성 아크릴레이트 필름의 생분해 특성)

  • Kim Jung-Du;Kam Sang-Kyu;Ju Chang-Sik;Lee Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1131-1138
    • /
    • 2004
  • The starch-filled waterborne acrylate (SWAC) films were prepared. The structures and properties of SWAC films were investigated by infrared spectroscopy, thermogravimetric analysis, and strength test. The biode­gradability of SWAC film was also studied by determination of reduced sugar products after enzymatic hydrolysis. The surface morphology of the SWAC film was investigated by scanning electron microscopy (SEM). The results showed that the tensile strength and elongation of SWAC film decreased with the increase of starch content. The SWAC film showed significantly higher water absorbed content than waterbonre acrylate film. The biodegradability of SWAC film increased as the content of starch increased. The biodegradation of starch in SWAC film by ${\alpha}-amylase\;was\;about\;77{\%}$ of that of pure starch.

Characteristics of Isothermal Analysis and Emulsion Copolymerization of Vinyl Acetate/Alkyl Acrylate (비닐아세테이트/알킬아크릴레이트계 에멀젼 공중합과 등온 열분해 특성)

  • Cho, Dae-Hoon;Choe, Sung-Il;Seul, Soo-Duk
    • Journal of Adhesion and Interface
    • /
    • v.13 no.2
    • /
    • pp.64-72
    • /
    • 2012
  • Vinyl acetate/alkyl acrylate copolymers were prepared by water-born emulsion copolymerization according to the compositional change of vinyl acetate and various alkyl acrylates such as methyl acrylate (MA), ethyl acrylate (EA), and n-butyl acrylate (BA). Ammonium persulfate (APS) was used as an initiator and poly(vinyl alcohol) (PVA) was used as a protective colloid. The significant result was described as follows. The activation energy determined by an isothermal analysis in the temperature region between $100{\sim}200^{\circ}C$ of the copolymer had the order of PVAc/PMA > PVAc/PEA > PVAc/PBA. The peel strengths before and after the plasma treatment were the order of PVAc/PMA > PVAc/PEA > PVAc/PBA.

Gel Type Formulation Utilizing Polymer-Surfactant Interaction (폴리머와 계면활성제의 상호작용을 이용한 젤타입 제형의 제조)

  • Kim, Dong-Joo;Kang, Tae-Jun;Lee, Cheon-Koo;Lee, Jung-No
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.1 s.60
    • /
    • pp.7-10
    • /
    • 2007
  • The interaction between polymers and surfactants was investigated by means of rheological and surface tension measurements. The polymers used in this study were acrylates/$C_{10-30}$ alkyl acrylate crosspolymer (AC) and ammonium acryloyldimethyltaurate/VP copolymer (AV). And the surfactants were PEG-40 hydrogenated castor oil (HC) and polysorbate 60 (P60). HC and P60 made the micelles intervening between AC polymers, resulting in the increase of viscosity. However, HC showed a similar behavior over the wider range of surfactant concentration than P60. Regarding of surface tensions in the same range of surfactant concentration, AC/HC solution showed the area of increasing surface tension with surfactant concentration in contrast to the AC/P60 solution showing no increasing area. It is assumed that the micelles between AC/HC were formed so cooperatively and strongly that the surfactants located at the surface originally moved to the micelles.

Preparation of Proton Conducting Anhydrous Membranes Using Poly(vinyl chloride) Comb-like Copolymer (Poly(vinyl chloride) 빗살형 공중합체를 이용한 무가습 수소이온 전도성 전해질막의 제조)

  • Kim, Jong-Hak;Koh, Joo-Hwan;Seo, Jin-Ah;Ahn, Sung-Hoon;Zeng, Xiaolei
    • Membrane Journal
    • /
    • v.19 no.2
    • /
    • pp.89-95
    • /
    • 2009
  • A comb-like copolymer consisting of a poly(vinyl chloride) backbone and poly(hydroxy ethyl acrylate) side chains, i.e. PVC-g-PHEA, was synthesized through atom transfer radical polymerization (ATRP). This comb-like copolymer was crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification of the -OH groups of PHEA in the graft copolymer and the -COOH groups of IDA. Upon doping with phosphoric acid (PA, $H_3PO_4$) to form imidazole-PA complexes, the proton conductivity of the membranes continuously increased with increasing PA content. A maximum proton conductivity of 0.011 S/cm was achieved at $100^{\circ}C$ under anhydrous conditions. The PVC-g-PHEA/IDA/PA complex membranes exhibited good mechanical properties, i.e. 575 MPa of Young's modulus, as determined by a universal testing machine (UTM). Thermal gravimetric analysis (TGA) shows that the membranes were thermally stable up to $200^{\circ}C$.

Synthesis of Polyamine Grafted Chitosan Copolymer and Evaluation of Its Corrosion Inhibition Performance

  • Li, Heping;Li, Hui;Liu, Yi;Huang, Xiaohua
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.142-147
    • /
    • 2015
  • Two new chitosan derivatives, polyamine grafted chitosan copolymers have been synthesized for corrosion protection of carbon steel in acidic medium. First, methyl acrylate graft chitosan copolymer (CS-MAA) was prepared by the reaction of chitosan (CS) and methyl acrylate (MAA) via the Michael addition reaction. Then, CS-MAA was reacted with ethylene diamine (EN) and triethylene tetramine (TN) respectively to synthesize ethylene diamine grafted chitosan copolymer (CS-MAA-EN) and triethylene tetramine grafted chitosan copolymer (CS-MAA-TN), and the structures were characterized by Fourier-transform infrared spectroscopy (FT-IR). At last, the corrosion inhibition activities on Q235 carbon steel were investigated by using gravimetric measurements, metallographic microscope, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The compounds CS-MAA-EN and CS-MAA-TN show an appreciable corrosion inhibition property against corrosion of Q235 carbon steel in 5% HCl solution at $25^{\circ}C$. It has been observed that CS-MAA-EN shows greater corrosion inhibition efficiency than CS-MAA-TN. The inhibition efficiency of CS-MAA-EN was close to 90% when the mass fraction concentration was 0.2%~0.3%; the inhibition efficiency of CS-MAA-TN was close to 85% when the mass fraction concentration was 0.02%. The present work provided very promising results in the preparation of green corrosion inhibitors.

Preparation of Acrylic Pressure Sensitive Adhesives for Optical Applications and Their Adhesion Performance (광학용 아크릴 점착제 제조 및 점착특성에 관한 연구)

  • Baek, Seung-Suk;Jang, Se-Jung;Lee, Jong-Hoon;Kho, Dong-Han;Lee, Sang-Hoon;Hwang, Seok-Ho
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.199-204
    • /
    • 2014
  • To prepare acrylic pressure sensitive adhesives (PSAs), quaternary copolymer syrups were photopolymerized from 2-ethylhexyl acrylate and 2-hydroxyethyl acrylate as default constituents and isobornyl acrylate and tetrahydrofurfuryl acrylate (THFA) as variable constituents. After polymerization, 1,6-hexanediol diacrylate and photoinitiator were added and then crosslinked by UV-irradiation to prepare the PSAs. The characteristics of the syrup such as viscosity, molecular weight, and solid content were investigated. As increasing THFA contents, the relationship between molecular weight and solid content of the syrup was reciprocal. Also, the relationship between peel strength and surface energy of the PSAs showed the same tendency. All the PSA samples showed high transmittance (more than 92%), low haze (less than 1.0%) and low color-difference (less than 1.0).

Preparation and Characterization of Electroactive Acrylic Polymer- Platinum Composites

  • Jeong Han Mo;Woo Sung Min;Kim Hyun Soo;Kim Byung Kyu;Bang Ju Hyun;Lee Sukmin;Mun Mu Seong
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.593-597
    • /
    • 2004
  • A new ionomeric polymer-metal composite (IPMC) was prepared using a cast membrane of acrylic copolymer, which was synthesized by radical copolymerization of fluoroalkyl acrylate and acrylic acid (AA). To examine its performance as a new electroactive polymer, the current and displacement responses to a step voltage applied across the IPMC were measured. The largest responses were observed when the AA content in the copolymer was $10.6\;wt\%$.

Synthesis of Polyacrylonitrile as Precursor for High-Performance Ultrafine Fibrids

  • Kim, Subong;Kuk, Yun-Su;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.407-414
    • /
    • 2014
  • Polyacrylonitrile (PAN) copolymers with different methyl acrylate (MA) contents were synthesized via solution polymerization and used as precursors for high-performance PAN ultrafine fibrids. The chemical structures of the copolymers were characterized using Fourier-transform infrared spectroscopy and $^{13}C$ nuclear magnetic resonance spectroscopy. Their particle sizes and aspect ratios increased with increasing viscosity, and the degree of crystallinity increased with decreasing concentration of copolymer solution. In contrast, their peak temperature and heat of exotherm increased with decreasing concentration of the copolymer solution. The aromatization indices (AIs) of the fibrids increased with increasing heat-treatment time; however, the AIs decreased when the heat-treatment temperature was higher than the onset temperature of the copolymers. On the other hand, the crystal sizes of the fibrids decreased with increasing concentration of the copolymer solution when the MA content was held constant.