Gel Type Formulation Utilizing Polymer-Surfactant Interaction

폴리머와 계면활성제의 상호작용을 이용한 젤타입 제형의 제조

  • Kim, Dong-Joo (Cosmetic R&D Center, LG Household & Healthcare Ltd.) ;
  • Kang, Tae-Jun (Cosmetic R&D Center, LG Household & Healthcare Ltd.) ;
  • Lee, Cheon-Koo (Cosmetic R&D Center, LG Household & Healthcare Ltd.) ;
  • Lee, Jung-No (Department of Bio GMP, Korea Bio Polytechnic College)
  • 김동주 (LG생활건강 기술연구원) ;
  • 강태준 (LG생활건강 기술연구원) ;
  • 이천구 (LG생활건강 기술연구원) ;
  • 이정노 (한국폴리텍 바이오대학 바이오 품질관리과)
  • Published : 2007.03.30

Abstract

The interaction between polymers and surfactants was investigated by means of rheological and surface tension measurements. The polymers used in this study were acrylates/$C_{10-30}$ alkyl acrylate crosspolymer (AC) and ammonium acryloyldimethyltaurate/VP copolymer (AV). And the surfactants were PEG-40 hydrogenated castor oil (HC) and polysorbate 60 (P60). HC and P60 made the micelles intervening between AC polymers, resulting in the increase of viscosity. However, HC showed a similar behavior over the wider range of surfactant concentration than P60. Regarding of surface tensions in the same range of surfactant concentration, AC/HC solution showed the area of increasing surface tension with surfactant concentration in contrast to the AC/P60 solution showing no increasing area. It is assumed that the micelles between AC/HC were formed so cooperatively and strongly that the surfactants located at the surface originally moved to the micelles.

수용성 폴리머와 계면활성제의 상호작용을 레올로지와 표면 장력을 측정하여 연구하였다. 본 연구에 사용된 폴리머는 acrylates/$C_{10-30}$ alkyl acrylate crosspolymer (AC), ammonium acryloyldimethyltaurate/VP copolymer (AV)이다. 계면활성제는 PEG-40 hydrogenated castor oil (HC), polysorbate 60 (P60)이다. HC와 P60은 AC 폴리머 주위에서 마이셀을 형성하여 점도를 증가하였다. 그러나, HC는 P60보다 보다 높은 농도 범위에서 점도 증가 거동을 보였다. 같은 농도 범위에서 계면활성제들의 표면장력을 비교해보면, 표면장력이 AC/HC의 농도 증가에 따라 증가한 반면, AC/P60의 농도증가에 대해서는 거의 증가하지 않았다. 이런 결과는 AC/HC 사이의 마이셀이 강하게 조직화된 구조를 형성하기 때문으로 추정된다.

Keywords

References

  1. R. Zana, In polymer-surfactant systems, Marcel Dekker, New York (1998)
  2. J. Lee and Y. Moroi, Solubilization of n-alkylbenzenes in aggregates of sodium dodecyl sulfate and a cationic polymer of high charge density (II), Langmuir, 20, 6116 (2004) https://doi.org/10.1021/la030443r
  3. S. Sallustio, L. Galantini, G. Gente, G. Masci, and C. La Mesa, Hydrophobically modified pullulans: characterization and physicochemical properties, Langmuir, 108, 18876 (2004)
  4. S. Panmai, R. Prud'homme, D. Peiffer, S. Jochusch, and N. Turro, Interactions between hydrophobically modified polymers and surfactants: a fluorescence study, Langmuir, 18, 3860 (2002) https://doi.org/10.1021/la020165g
  5. T. Noda, A. Hashidzume, and Y. Morishima, Rheological properties of transient networks formed from copolymers of sodium acrylate and methacrylates substituted with amphiphiles: comparison with sodium 2-(acrylamido)-2-methylpropanesulfonate copolymers, Langmuir, 17, 5984 (2001) https://doi.org/10.1021/la0102915
  6. B. Magny, F. Lafuma, and I. Iliopoulos, Determination of microstructure of hydrophobically modified water-soluble polymers by $^{13}C-NMR$, Polymer, 33, 3151 (1992) https://doi.org/10.1016/0032-3861(92)90227-N
  7. C. J. Davidson, P. Meares, and D. G. Hall, A polymeric electrode for ionic surfactants, J. Membr. Sci., 36, 511 (1988) https://doi.org/10.1016/0376-7388(88)80040-1
  8. K. Shirahama, S. Sato, N. Niino, and N. Takisawa, Interaction of surfactant with polymer gel binding isotherm and swelling ratio, Colloids surf., A, 112, 233 (1996) https://doi.org/10.1016/0927-7757(96)03671-0
  9. J. Liu, M. Nakama, N. Takisawa, and K. Shirahama, Binding of dodecyloxyethylpyridinium bromide to polymer: the effect of molecular geometry of surfactant, Colloids surf., A, 150, 275 (1999) https://doi.org/10.1016/S0927-7757(98)00819-X
  10. C. W. Macosko, Rheology: principles, measurements, and applications, John Wiley & Sons, New York (1994)