• Title/Summary/Keyword: acquired drug resistance

Search Result 71, Processing Time 0.023 seconds

Acquired Drug Resistance during Standardized Treatment with First-line Drugs in Patients with Multidrug-Resistant Tuberculosis (다제내성결핵 환자에서 표준 1차 항결핵제 치료 중 발생한 획득 내성)

  • Jeon, Doosoo;Kim, Dohyung;Kang, Hyungseok;Min, Jinhong;Sung, Nackmoon;Hwang, Soohee;Park, Seungkew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.3
    • /
    • pp.198-204
    • /
    • 2009
  • Background: First-line drugs, if sensitive, are the most potent drugs in the treatment of multidrug-resistant tuberculosis (MDR-TB). This study examined the frequency and risk factors associated with acquired drug resistance to first-line drugs during a standardized treatment using first-line drugs in patients with MDR-TB. Methods: This study included patients who were diagnosed with MDR-TB at the National Masan Tuberculosis Hospital between January 2004 and May 2008, treated with standardized first-line drugs, and for whom the preand post-treatment results of the drug susceptibility test were available. Their medical records were reviewed retrospectively. Results: Of 41 MDR-TB patients, 14 (34.1%) acquired additional resistance to ethambutol (EMB) or pyrazinamide (PZA). Of 11 patients initially resistant to isoniazid (INH) and rifampicin (RFP), 3 (27.3%) acquired additional resistance to both EMB and PZA, and 3 (27.3%) to PZA. Of 18 patients initially resistant to INH, RFP and EMB, 6 (33.3%) acquired additional resistance to PZA. Of 6 patients initially resistant to INH, RFP and PZA, 2 (33.3%) acquired additional resistance to EMB. Ten of the 41 MDR-TB patients (24.4%) changed from resistant to susceptible. No statistically significant risk factors associated with acquired resistance could be found. Conclusion: First-line drugs should be used cautiously in the treatment of MDR-TB in Korea considering the potential acquisition of drug resistance.

Molecular Basis of Drug Resistance: Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors and Anaplastic Lymphoma Kinase Inhibitors

  • Yang, Sei-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.75 no.5
    • /
    • pp.188-198
    • /
    • 2013
  • Over the past decade, several kinase inhibitors have been approved based on their clinical benefit in cancer patients. Unfortunately, in many cases, patients develop resistance to these agents via secondary mutations and alternative mechanisms. To date, several major mechanisms of acquired resistance, such as secondary mutation of the epidermal growth factor receptor (EGFR) gene, amplification of the MET gene and overexpression of hepatocyte growth factor, have been reported. This review describes the recent findings on the mechanisms of primary and acquired resistance to EGFR tyrosine kinase inhibitors and acquired resistance to anaplastic lymphoma kinase inhibitors, primarily focusing on non-small cell lung carcinoma.

Subsequent Treatment Choices for Patients with Acquired Resistance to EGFR-TKIs in Non-small Cell Lung Cancer: Restore after a Drug Holiday or Switch to another EGFR-TKI?

  • Song, Tao;Yu, Wei;Wu, Shi-Xiu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.205-213
    • /
    • 2014
  • The outcomes of first-generation EGFR-TKIs (Gefitnib and Erlotinib) have shown great advantages over traditional treatment strategies in patients with non-small cell lung cancer (NSCLC), but unfortunately we have to face the situation that most patients still fail to respond in the long term despite initially good control. Up to now, the mechanism of acquired resistance to EGFR-TKIs has not been fully clarified. Herein, we sought to compile the available clinical reports in the hope to better understanding the subsequent treatment choices, particularly on whether restoring after a drug holiday or switching to another EGFR-TKI is the better option after failure of one kind of EGFR-TKI.

Antimicrobial Susceptibility and Clonal Relatedness between Community- and Hospital-Acquired Methicillin-Resistant Staphylococcus aureus from Blood Cultures

  • Jung Sook-In;Shin Dong-Hyeon;Park Kyeong-Hwa;Shin Jong-Hee
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.336-343
    • /
    • 2006
  • We compared the antimicrobial resistance and clonal relationships among the community-acquired (CA) and hospital-acquired (HA) methicillin-resistant Staphylococcus aureus (MRSA) strains that were isolated from blood cultures in a university hospital over a 4-year period. A total of 131 MRSA isolates, including 28 CA-MRSA and 103 HA-MRSA strains, were identified; antimicrobial susceptibility testing indicated that the CA-MRSA isolates were more susceptible to erythromycin (21 % vs 6% ; P=0.02), clindamycin (46% vs 12%; P<0.01), ciprofloxacin (43% vs 11%; P<0.01), and gentamicin (43% vs 6%; P<0.01) than were the HA-MRSA isolates. Pulsed-field gel electrophoresis (PFGE) typing and antimicrobial resistance profiles separated the 20 CA-MRSA isolates into 14 and 10 different patterns, respectively, and the 53 HA-MRSA isolates were separated into 24 and 7 different patterns, respectively. Twenty-one (40%) of the 53 HA-MRSA isolates belonged to two predominant PFGE types, and most of them showed multi-drug resistant patterns. Four (20%) of the 20 CA-MRSA and 10 (19%) of the 53 HA-MRSA isolates fell into two common PFGE patterns, and each of them showed the same multi-drug resistant pattern. This study suggests that, although the CA-MRSA blood isolates showed diverse PFGE and antimicrobial resistance patterns, some of these isolates may have originated from the HA-MRSA strains.

Decreased Interaction of Raf-1 with Its Negative Regulator Spry2 as a Mechanism for Acquired Drug Resistance

  • Ahn, Jun-Ho;Kim, Yun-Ki;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.174-180
    • /
    • 2011
  • Experiments were carried out to determine the role of Raf-1 kinase in the development of drug resistance to paclitaxel in v-H-ras transformed NIH 3T3 fibroblasts (Ras-NIH 3T3). We established a multidrug-resistant cell line (Ras-NIH 3T3/Mdr) from Ras-NIH 3T3 cells by stepwise increases in paclitaxel. Drug sensitivity assays indicated that the $IC_{50}$ value for drug-resistant Ras-NIH 3T3/Mdr cells was more than 1 ${\mu}M$ paclitaxel, 10- or more-fold higher than for the parental Ras-NIH 3T3 cells. Western blot and RT-PCR analysis showed that the drug efflux pump a P-glycoprotein were highly expressed in Ras-NIH 3T3/Mdr cells, while not being detectable in Ras-NIH 3T3 cells. Additionally, verapamil, which appears to inhibit drug efflux by acting as a substrate for P-glycoprotein, completely reversed resistance to paclitaxel in Ras-NIH 3T3/Mdr cell line, indicating that resistance to paclitaxel is associated with overexpression of the multidrug resistance gene. Interestingly, Ras-NIH 3T3/Mdr cells have higher basal Raf-1 activity compared to Ras-NIH 3T3 cells. Unexpectedly, however, the colocalization of Raf-1 and its negative regulator Spry2 was less observed in cytoplasm of Ras-NIH 3T3/Mdr cells due to translocation of Spry2 around the nucleus in the perinuclear zone, implying that Raf-1 may be released from negative feedback inhibition by interacting with Spry2. We also showed that shRNA-mediated knockdown of Raf-1 caused a moderate increase in cell susceptibility to paclitaxel. Thus, the results presented here suggest that a Raf-1-dependent pathway plays an important role in the development of acquired drug-resistance.

The Diversity of Multi-drug Resistance Profiles in Tetracycline-Resistant Vibrio Species Isolated from Coastal Sediments and Seawater

  • Neela Farzana Ashrafi;Nonaka Lisa;Suzuki Satoru
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.64-68
    • /
    • 2007
  • In this study we examined the multi-drug resistance profiles of the tetracycline (TC) resistant genus Vibrio to determine its susceptibility to two ${\beta}-lactams$, ampicillin (ABPC), and mecillinam (MPC), as well as to macrolide, erythromycin (EM). The results showed various patterns of resistance among strains that were isolated from very close geographical areas during the same year, suggesting diverse patterns of drug resistance in environmental bacteria from this area. In addition, the cross-resistance patterns suggested that the resistance determinants among Vibrio spp. are acquired differently within the sediment and seawater environments.

Monitoring the Expression Profiles of Doxorubicin-Resistant Acute Myelocytic Leukemia Cells by DNA Microarray Analysis

  • Song, Ju-Han;Kim, Tae-Sung
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.167.2-168
    • /
    • 2003
  • Anticancer drug resistance occasionally occurs in malignant hematologic diseases such as acute myelocytic leukemia (AML) treated with chemotherapy and is a major problem to complete remission. Malignant cells primarily induce intrinsic resistance to treatment of anticancer drug, but gradually obtain acquired resistance to cytotoxic activities of chemotherapy. In this study, we monitored the expression profiles of doxorubicin resistance-related genes in AML-2/DX100, a doxorubicin-resistant human acute myelocytic leukemia cell line. (omitted)

  • PDF

A Trend in Acquired Drug Resistances of Tuberculosis Patients Registered in Health Centers from 1981 to 2004 (1981년부터 2004년까지 보건소 재치료 결핵 환자의 항결핵제 내성률 추이)

  • Chang, Chulhun L.;Lee, Eun Yup;Park, Soon Kew;Jeong, Seok Hoon;Park, Young Kil;Choi, Yong Woon;Kim, Hee Jin;Lew, Woo Jin;Bai, Gill-Han
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.6
    • /
    • pp.619-624
    • /
    • 2005
  • Background : The drug resistance rate in tuberculosis patients with history of chemotherapy is an important indicator of for evaluation of appropriateness of treatment regimens and compliance of patients. This study examined the long-term changes in the drug resistance rates among TB patients failed in treatment or reactivated. Methods : The results of drug susceptibility testing data from patients registered in health centers from 1981 to 2004 were analyzed. Results : The rate of resistance to isoniazid decreased from 90% to 20%, and the resistance to ethambutol decreased from 45% to 6%. The rate of resistance to rifampicin varied from 13% to 28% and the resistance to pyrazinamide was 5% to 10%. Multidrug resistance was about 2-3% lower than any rifampicin resistance rates. The second-line drug resistance was ranged from 1% to 3%. There was no difference between patients' genders. Patient numbers per 100,000 population increased with age. The regional distribution was even at 4-6 patients per 100,000 population, and drug resistance rates were significantly lower in big city areas than in small towns and rural areas. Conclusion : The rates of resistance of Mycobacterium tuberculosis isolated from TB patients with history of chemotherapy to isoniazid, rifampin, ethambutol, and isoniazid plus rifampin were significantly decreased during over two decades.

Elucidating molecular mechanisms of acquired resistance to BRAF inhibitors in melanoma using a microfluidic device and deep sequencing

  • Han, Jiyeon;Jung, Yeonjoo;Jun, Yukyung;Park, Sungsu;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.2.1-2.10
    • /
    • 2021
  • BRAF inhibitors (e.g., vemurafenib) are widely used to treat metastatic melanoma with the BRAF V600E mutation. The initial response is often dramatic, but treatment resistance leads to disease progression in the majority of cases. Although secondary mutations in the mitogen-activated protein kinase signaling pathway are known to be responsible for this phenomenon, the molecular mechanisms governing acquired resistance are not known in more than half of patients. Here we report a genome- and transcriptome-wide study investigating the molecular mechanisms of acquired resistance to BRAF inhibitors. A microfluidic chip with a concentration gradient of vemurafenib was utilized to rapidly obtain therapy-resistant clones from two melanoma cell lines with the BRAF V600E mutation (A375 and SK-MEL-28). Exome and transcriptome data were produced from 13 resistant clones and analyzed to identify secondary mutations and gene expression changes. Various mechanisms, including phenotype switching and metabolic reprogramming, have been determined to contribute to resistance development differently for each clone. The roles of microphthalmia-associated transcription factor, the master transcription factor in melanocyte differentiation/dedifferentiation, were highlighted in terms of phenotype switching. Our study provides an omics-based comprehensive overview of the molecular mechanisms governing acquired resistance to BRAF inhibitor therapy.

Over-Expression of Beclin-1 Facilitates Acquired Resistance to Histone Deacetylase Inhibitor-Induced Apoptosis

  • Wang, Shi-Miao;Li, Xiao-Hui;Xiu, Zhi-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7913-7917
    • /
    • 2014
  • Apoptotic cell death plays a predominant role in histone deacetylase (HDAC) inhibitor-induced cytotoxicity. Nuclear morphological changes and activation of apoptotic executors are involved in CTS203-induced cell death. However, emerging issues of HDAC inhibitor-resistance have been observed in patients. Herein, MCF-7 cells were continuously exposed to CTS203 until the derived cells could proliferate normally in its presence. The newly obtained CTS203-resistant cells were nominated as MCF-7/203R. Compared to MCF-7 original cells, the MCF-7/203R cells were less sensitive to CTS203-induced apoptosis, with a minimal 6-fold higher $IC_{50}$ value. In contrast, the expression of Beclin-1 was dramatically up-regulated, positively correlated to the acquisition of CTS203-resistance. Our results revealed the participation of autophagy in acquired HDAC inhibitor-resistance and further identified Beclin-1 as a promising target for anti-drug resistance.