• Title/Summary/Keyword: acoustic liner design

Search Result 4, Processing Time 0.016 seconds

Acoustic Modal Property of a Vehicle Passenger Compartment including Head Liner (헤드라이너를 포함한 승용차의 차실의 음향모드 특성)

  • Kim, Seock-Hyun;Lee, Jin-Woo
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.43-48
    • /
    • 2002
  • Acoustic modes of a vehicle compartment dominate the noise characteristics of the vehicle system in the low frequency range. Vehicle compartments have head liner and air gap of proper thickness to mount a interior lamp, as well as to have a good sound insulation and absorption performance. This study estimates the acoustic modal property of the medium size passenger car by experiment and by finite element analysis and also, investigates the effect of the head liner on the acoustic mode of the passenger compartment to obtain useful information for low noise compartment design.

  • PDF

Design and Test of ElectroMagnetic Acoustic Transducer applicable to Wall-Thinning Inspection of Containment Liner Plates (격납건물 라이너 플레이트 감육 검사를 위한 전자기 초음파 트랜스듀서의 설계 및 성능 평가)

  • Han, Soon Woo;Cho, Seung Hyun;Kang, To;Moon, Seong In
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.46-52
    • /
    • 2019
  • This work proposes a noncontact ultrasonic transducer for detecting wall-thinning of containment liner plates of nuclear power plants by measuring their thickness without physical contact. Because the containment liner plate is designed to prevent atmospheric leakage of radioactive substances under severe nuclear accident, its wall-thinning inspection is important for safety of nuclear power plants. Wall-thinning investigation of containment liner plates have been carried out by measuring their thickness with contact-type ultrasonic thickness gauge by inspectors and needs a lot of time and cost. As an alternative, an electromagnetic acoustic transducer measuring precisely thickness of containment liner plates without any physical contact or couplant was suggested in this research. A transducer generating and measuring shear ultrasonic waves in thickness direction was designed and wave field produced by the transducer was analyzed to verify the design. The working performance of the suggested transducer was tested with carbon steel plate specimens with various thicknesses. The test result shows that the proposed transducer can measure thickness of the specimens precisely without any couplant and implies that swift scanning of wall-thinning of containment liner plates will be possible with the proposed transducer.

A new insight into design of acoustic liner arrays arrangement in the presence of a grazing flow

  • Hadi Dastourani ;Iman Bahman-Jahromi
    • Advances in Computational Design
    • /
    • v.8 no.4
    • /
    • pp.273-293
    • /
    • 2023
  • This study evaluated the acoustic performance of two configurations of serial HR arrays and lined HR arrays in the presence of grazing flow using a 3D numerical simulation. The dual, triple, and quad HR arrays were compared to the conventional HR array. The simulation results showed that the number of resonant frequencies increased with the number of serial HR arrays. The CTL did not significantly change with the number of serial HR arrays. The acoustic performance of the two, three, and four-lined HR arrays was compared to the conventional HR array. The results showed that the resonant frequency and TLmax increased with the number of lined HR arrays. The CTL also increased with the number of lined HR arrays. The effect of the grazing flow Mach number (Ma) was investigated on the four-lined HR array configuration and compared to the conventional HR configuration. TLmax and CTL decreased for both configurations with increasing Ma. The four-lined HR array configuration had significantly better acoustic performance than the conventional HR configuration. The TLmax and CTL increased by more than 300% when the configuration was changed from the conventional HR to the four-lined HR array at Ma = 0.The increment percentage decreased with increasing Ma.

Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure (다중접착구조물의 초음파 공진 신호 분석)

  • Kim, Dong-Ryun;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.401-409
    • /
    • 2012
  • Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.