• Title/Summary/Keyword: acoustic feature

Search Result 238, Processing Time 0.02 seconds

Development and Application of Phased Array System for Defect Imaging in Plate-like Structures (평판 구조물의 영상화를 위한 위상 배열 시스템 개발 및 응용)

  • Lee, Joo Kyung;Kwon, Young Eui;Lee, Heung Son;Seung, Hong Min;Kim, Ki Yeon;Lee, Jun Kyu;Kim, Hoe Woong;Lee, Ho Cheol;Kim, Yoon Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.123-130
    • /
    • 2014
  • An ultrasonic magnetostrictive transducer-based phased-array system for imaging defects in plate structures is newly proposed. In that most ultrasonic phased array systems rely on piezoelectric transducers or electromagnetic acoustic transducers, this system has its own unique feature of employing magnetostrictive transducers. Interest in using a phased array system using magnetostrictive transducers has been recently reported for pipe inspection but no such system has been developed for plate inspection. In this investigation, we aim to propose a phased array system using OL-MPTs (Omnidirectional Lamb wave Magnetostrictive Patch Transducers) for plate inspection. The developed system consists of a multi-channel function generator, power amplifiers, preamplifiers and a data acquisition unit. In the process of its development, each of the units must be checked and in doing so, we suggest types of ultrasonic wave experiments that should be carried out. Finally, the phased system using a transducer array composed of eight OL-MPTs is newly configured and is applied for actual crack detection experiments.

Speech Recognition Accuracy Prediction Using Speech Quality Measure (음성 특성 지표를 이용한 음성 인식 성능 예측)

  • Ji, Seung-eun;Kim, Wooil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.471-476
    • /
    • 2016
  • This paper presents our study on speech recognition performance prediction. Our initial study shows that a combination of speech quality measures effectively improves correlation with Word Error Rate (WER) compared to each speech measure alone. In this paper we demonstrate a new combination of various types of speech quality measures shows more significantly improves correlation with WER compared to the speech measure combination of our initial study. In our study, SNR, PESQ, acoustic model score, and MFCC distance are used as the speech quality measures. This paper also presents our speech database verification system for speech recognition employing the speech measures. We develop a WER prediction system using Gaussian mixture model and the speech quality measures as a feature vector. The experimental results show the proposed system is highly effective at predicting WER in a low SNR condition of speech babble and car noise environments.

Vector Quantizer Based Speaker Normalization for Continuos Speech Recognition (연속음성 인식기를 위한 벡터양자화기 기반의 화자정규화)

  • Shin Ok-keun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.8
    • /
    • pp.583-589
    • /
    • 2004
  • Proposed is a speaker normalization method based on vector quantizer for continuous speech recognition (CSR) system in which no acoustic information is made use of. The proposed method, which is an improvement of the previously reported speaker normalization scheme for a simple digit recognizer, builds up a canonical codebook by iteratively training the codebook while the size of codebook is increased after each iteration from a relatively small initial size. Once the codebook established, the warp factors of speakers are estimated by comparing exhaustively the warped versions of each speaker's utterance with the codebook. Two sets of phones are used to estimate the warp factors: one, a set of vowels only. and the other, a set composed of all the Phonemes. A Piecewise linear warping function which corresponds to the estimated warp factor is adopted to warp the power spectrum of the utterance. Then the warped feature vectors are extracted to be used to train and to test the speech recognizer. The effectiveness of the proposed method is investigated by a set of recognition experiments using the TIMIT corpus and HTK speech recognition tool kit. The experimental results showed comparable recognition rate improvement with the formant based warping method.

Acoustic Metal Impact Signal Processing with Fuzzy Logic for the Monitoring of Loose Parts in Nuclear Power Plang

  • Oh, Yong-Gyun;Park, Su-Young;Rhee, Ill-Keun;Hong, Hyeong-Pyo;Han, Sang-Joon;Choi, Chan-Duk;Chun, Chong-Son
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1E
    • /
    • pp.5-19
    • /
    • 1996
  • This paper proposes a loose part monitoring system (LPMS) design with a signal processing method based on fuzzy logic. Considering fuzzy characteristics of metallic impact waveform due to not only interferences from various types of noises in an operating nuclear power plant but also complex wave propagation paths within a monitored mechanical structure, the proposed LPMS design incorporates the comprehensive relation among impact signal features in the fuzzy rule bases for the purposes of alarm discrimination and impact diagnosis improvement. The impact signal features for the fuzzy rule bases include the rising time, the falling time, and the peak voltage values of the impact signal envelopes. Fuzzy inference results based on the fuzzy membership values of these impact signal features determine the confidence level data for each signal feature. The total integrated confidence level data is used for alarm discrimination and impact diagnosis purposes. Through the perpormance test of the proposed LPMS with mock-up structures and instrumentation facility, test results show that the system is effective in diagnosis of the loose part impact event(i.e., the evaluation of possible impacted area and degree of impact magnitude) as well as in suppressing false alarm generation.

  • PDF

Implementation of Embedded Speech Recognition System for Supporting Voice Commander to Control an Audio and a Video on Telematics Terminals (텔레메틱스 단말기 내의 오디오/비디오 명령처리를 위한 임베디드용 음성인식 시스템의 구현)

  • Kwon, Oh-Il;Lee, Heung-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.93-100
    • /
    • 2005
  • In this paper, we implement the embedded speech recognition system to support various application services such as audio and video control using speech recognition interface on cars. The embedded speech recognition system is implemented and ported in a DSP board. Because MIC type and speech codecs affect the accuracy of speech recognition. And also, we optimize the simulation and test environment to effectively remove the real noises on a car. We applied a noise suppression and feature compensation algorithm to increase an accuracy of sppech recognition on a car. And we used a context dependent tied-mixture acoustic modeling. The performance evaluation showed high accuracy of proposed system in office environment and even real car environment.

A Study on the Strength Evaluation of Unidirectional Carbon Fiber Reinforced Plastics by Nondestructive Method (일방성(一方性) 복함재료(複合材料)의 파괴거동(破壞擧動) 및 강도평가(强度評價)에 관(關)한 연구(硏究))

  • Chang, H.K.;Lee, J.S.;Cho, K.S.;Lee, S.H.;Park, E.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.7 no.2
    • /
    • pp.42-47
    • /
    • 1988
  • The off-axis tensile strength of the unidirectional carbon fiber reinforced plastic and the residual strength of impact damaged CFRP were measured and compared with the stress wave factor (SWF) of the specimens. The SWF values were measured to be decreased with the strength reduction in both cases and found to be useful for the nondestructive strength evaluation of unidirectional CFRP. The failure behaviour of the unidirectional CFRP during off-axis tensile testing was also monitored by acoustic emission(AE) method. The AE energy release showed the characteristic feature depending on the off-axis angle and this result was analyzed to be caused by the difference of the expected failure mode depending on the off-axis angle. The failure mode of CFRP was found to be analyzed by investigation of the peak amplitude distribution of AE.

  • PDF

Automatic Vowel Onset Point Detection Based on Auditory Frequency Response (청각 주파수 응답에 기반한 자동 모음 개시 지점 탐지)

  • Zang, Xian;Kim, Hag-Tae;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.333-342
    • /
    • 2012
  • This paper presents a vowel onset point (VOP) detection method based on the human auditory system. This method maps the "perceptual" frequency scale, i.e. Mel scale onto a linear acoustic frequency, and then establishes a series of Triangular Mel-weighted Filter Bank simulate the function of band pass filtering in human ear. This nonlinear critical-band filter bank helps greatly reduce the data dimensionality, and eliminate the effect of harmonic waves to make the formants more prominent in the nonlinear spaced Mel spectrum. The sum of mel spectrum peaks energy is extracted as feature for each frame, and the instinct at which the energy amplitude starts rising sharply is detected as VOP, by convolving with Gabor window. For the single-word database which contains 12 vowels articulated with different kinds of consonants, the experimental results showed a good average detection rate of 72.73%, higher than other vowel detection methods based on short-time energy and zero-crossing rate.

A Study on Speech Recognition in a Running Automobile (주행중인 자동차 환경에서의 음성인식 연구)

  • 양진우;김순협
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.3-8
    • /
    • 2000
  • In this paper, we studied design and implementation of a robust speech recognition system in noisy car environment. The reference pattern used in the system is DMS(Dynamic Multi-Section). Two separate acoustic models, which are selected automatically depending on the noisy car environment for the speech in a car moving at below 80km/h and over 80km/h are proposed. PLP(Perceptual Linear Predictive) of order 13 is used for the feature vector and OSDP (One-Stage Dynamic Programming) is used for decoding. The system also has the function of editing the phone-book for voice dialing. The system yields a recognition rate of 89.75% for male speakers in SI (speaker independent) mode in a car running on a cemented express way at over 80km/h with a vocabulary of 33 words. The system also yields a recognition rate of 92.29% for male speakers in SI mode in a car running on a paved express way at over 80km/h.

  • PDF

Shooting sound analysis using convolutional neural networks and long short-term memory (합성곱 신경망과 장단기 메모리를 이용한 사격음 분석 기법)

  • Kang, Se Hyeok;Cho, Ji Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.312-318
    • /
    • 2022
  • This paper proposes a model which classifies the type of guns and information about sound source location using deep neural network. The proposed classification model is composed of convolutional neural networks (CNN) and long short-term memory (LSTM). For training and test the model, we use the Gunshot Audio Forensic Dataset generated by the project supported by the National Institute of Justice (NIJ). The acoustic signals are transformed to Mel-Spectrogram and they are provided as learning and test data for the proposed model. The model is compared with the control model consisting of convolutional neural networks only. The proposed model shows high accuracy more than 90 %.

Surficial Sediment Classification using Backscattered Amplitude Imagery of Multibeam Echo Sounder(300 kHz) (다중빔 음향 탐사시스템(300 kHz)의 후방산란 자료를 이용한 해저면 퇴적상 분류에 관한 연구)

  • Park, Yo-Sup;Lee, Sin-Je;Seo, Won-Jin;Gong, Gee-Soo;Han, Hyuk-Soo;Park, Soo-Chul
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.747-761
    • /
    • 2008
  • In order to experiment the acoustic remote classification of seabed sediment, we achieved ground-truth data(i.e. video and grab samples, etc.) and developed post-processing for automatic classification procedure on the basis of 300 kHz MultiBeam Echo Sounder(MBES) backscattering data, which was acquired using KONGBERG Simrad EM3000 at Sock-Cho Port, East Sea of South Korea. Sonar signal and its classification performance were identified with geo-referenced video imagery with the aid of GIS (Geographic Information System). The depth range of research site was from 5 m to 22.7 m, and the backscattering amplitude showed from -36dB to -15dB. The mean grain sizes of sediment from equi-distanced sampling site(50 m interval) varied from 2.86$(\phi)$ to 0.88(\phi). To acquire the main feature for the seabed classification from backscattering amplitude of MBES, we evaluated the correlation factors between the backscattering amplitude and properties of sediment samples. The performance of seabed remote classification proposed was evaluated with comparing the correlation of human expert segmentation to automatic algorithm results. The cross-model perception error ratio on automatic classification algorithm shows 8.95% at rocky bottoms, and 2.06% at the area representing low mean grain size.