• Title/Summary/Keyword: acoustic feature

Search Result 238, Processing Time 0.025 seconds

A Study on Signal Feature Extraction of Partial Discharge Types Using Discrete Wavelet Transform Technique (이산웨이블렛 변환기법을 이용한 부분방전종류의 신호특징추출에 관한연구)

  • Park, Jae-Jun;Jeon, Byung-Hoon;Kim, Jin-Seong;Jeon, Hyun-Gu;Baek, Kwan-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.170-176
    • /
    • 2002
  • In this papers, we proposed the feature extraction method due to partial discharge type of transformers. For wavelet transform, Daubechie's filter is used, we can obtain wavelet coefficients which is used to extract feature of statistical parameters (maximum value, average value, dispersion, skewness, kurtosis) about acoustic emission signal generated from each partial discharge type. The defects which could occur in a transformer were simulated by using needle-plane electrode, IEC electrode and Void electrode. Also, these coefficients are used to identify signal of partial discharge type electrode fault in transformer. As a result, from compare of acoustic emission amplitude and acoustic average value, we are obtained results of IEC electrode> Void electrode> Needle-Plane electrode. otherwise, In case of skewness and kurtosis, we are obtained results of Needle-Plane electrode electrode> Void electrode> IEC electrode.

  • PDF

Application of Technique Discrete Wavelet Transform for Acoustic Emission Signals (음향방출신호에 대한 이산웨이블릿 변환기법의 적용)

  • 박재준;김면수;김민수;김진승;백관현;송영철;김성홍;권동진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.585-591
    • /
    • 2000
  • The wavelet transform is the most recent technique for processing signals with time-varying spectra. In this paper, the wavelet transform is utilized to improved the assessment and multi-resolution analysis of acoustic emission signals generating in partial discharge. This paper especially deals with the assessment of process statistical parameter using the features extracted from the wavelet coefficients of measured acoustic emission signals in case of applied voltage 20[kv]. Since the parameter assessment using all wavelet coefficients will often turn out leads to inefficient or inaccurate results, we selected that level-3 stage of multi decomposition in discrete wavelet transform. We applied FIR(Finite Impulse Response)digital filter algorithm in discrete to suppression for random noise. The white noise be included high frequency component denoised as decomposition of discrete wavelet transform level-3. We make use of the feature extraction parameter namely, maximum value of acoustic emission signal, average value, dispersion, skewness, kurtosis, etc. The effectiveness of this new method has been verified on ability a diagnosis transformer go through feature extraction in stage of acting(the early period, the last period) .

  • PDF

Speech emotion recognition based on genetic algorithm-decision tree fusion of deep and acoustic features

  • Sun, Linhui;Li, Qiu;Fu, Sheng;Li, Pingan
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.462-475
    • /
    • 2022
  • Although researchers have proposed numerous techniques for speech emotion recognition, its performance remains unsatisfactory in many application scenarios. In this study, we propose a speech emotion recognition model based on a genetic algorithm (GA)-decision tree (DT) fusion of deep and acoustic features. To more comprehensively express speech emotional information, first, frame-level deep and acoustic features are extracted from a speech signal. Next, five kinds of statistic variables of these features are calculated to obtain utterance-level features. The Fisher feature selection criterion is employed to select high-performance features, removing redundant information. In the feature fusion stage, the GA is is used to adaptively search for the best feature fusion weight. Finally, using the fused feature, the proposed speech emotion recognition model based on a DT support vector machine model is realized. Experimental results on the Berlin speech emotion database and the Chinese emotion speech database indicate that the proposed model outperforms an average weight fusion method.

Time-Frequency Feature Extraction of Broadband Echo Signals from Individual Live Fish for Species Identification (활어 개체어의 광대역 음향산란신호로부터 어종식별을 위한 시간-주파수 특징 추출)

  • Lee, Dae-Jae;Kang, Hee-Young;Pak, Yong-Ye
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.2
    • /
    • pp.214-223
    • /
    • 2016
  • Joint time-frequency images of the broadband acoustic echoes of six fish species were obtained using the smoothed pseudo-Wigner-Ville distribution (SPWVD). The acoustic features were extracted by changing the sliced window widths and dividing the time window by a 0.02-ms interval and the frequency window by a 20-kHz bandwidth. The 22 spectrum amplitudes obtained in the time and frequency domains of the SPWVD images were fed as input parameters into an artificial neural network (ANN) to verify the effectiveness for species-dependent features related to fish species identification. The results showed that the time-frequency approach improves the extraction of species-specific features for species identification from broadband echoes, compare with time-only or frequency-only features. The ANN classifier based on these acoustic feature components was correct in approximately 74.5% of the test cases. In the future, the identification rate will be improved using time-frequency images with reduced dimensions of the broadband acoustic echoes as input for the ANN classifier.

Unsupervised Learning-Based Pipe Leak Detection using Deep Auto-Encoder

  • Yeo, Doyeob;Bae, Ji-Hoon;Lee, Jae-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.21-27
    • /
    • 2019
  • In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes. The key idea of the proposed technique is to learn representative features of the leak-free state using leak-free time-series acoustic data and the deep auto-encoder. The proposed technique can be used to create a PLD model that detects leaks in the pipeline in an unsupervised learning manner. This means that we only use leak-free data without labeling while training the deep auto-encoder. In addition, when compared to the previous supervised learning-based PLD method that uses image features, this technique does not require complex preprocessing of time-series acoustic data owing to the unsupervised feature extraction scheme. The experimental results show that the proposed PLD method using the deep auto-encoder can provide reliable PLD accuracy even considering unsupervised learning-based feature extraction.

The Duration Feature of Acoustic Signals and Korean Speakers' Perception of English Stops (구간 신호 길이 자질과 한국인의 영어 파열음 지각)

  • Kim, Mun-Hyong;Jun, Jong-Sup
    • Phonetics and Speech Sciences
    • /
    • v.1 no.3
    • /
    • pp.19-28
    • /
    • 2009
  • This paper reports experimental findings about the duration feature of the acoustic components of English stops in Korean speakers' voicing perception. In our experiment, 35 participants discriminated between recorded stimuli and digitally transformed stimuli with different duration features from the original stimuli. 72 sets of paired stimuli are generated to test the effects of the duration feature in various phonetic contexts. The result of our experiment is a complicated cross-tabulation with 540 cells defined by five categorical independent variables plus one response variable. To find a meaningful generalization out of this complex frequency table, we ran logit log-linear regression analyses. Surprisingly, we have found that there is no single effect of the duration feature in all phonetic contexts on Korean speakers' perception of the voicing contrasts of English stops. Instead, the logit log-linear analyses reveal that there are interaction effects among phonetic contexts (=C), the places of articulation of stops (=P), and the voicing contrast (=V), and among duration (=T), phonetic contexts, and the places of articulation. To put it in mathematical terms, the distribution of the data can be explained by a simple log-linear equation, logF=${\mu}+{\lambda}CPV+{\lambda}TCP$.

  • PDF

Signal Processing Technology for Rotating Machinery Fault Signal Diagnosis (회전기계 결함신호 진단을 위한 신호처리 기술 개발)

  • Choi, Byeong-Keun;Ahn, Byung-Hyun;Kim, Yong-Hwi;Lee, Jong-Myeong;Lee, Jeong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.331-337
    • /
    • 2013
  • Acoustic Emission technique is widely applied to develop the early fault detection system, and the problem about a signal processing method for AE signal is mainly focused on. In the signal processing method, envelope analysis is a useful method to evaluate the bearing problems and Wavelet transform is a powerful method to detect faults occurred on rotating machinery. However, exact method for AE signal is not developed yet. Therefore, in this paper two methods which are Hilbert transform and DET for feature extraction. In addition, we evaluate the classification performance with varying the parameter from 2 to 15 for feature selection DET, 0.01 to 1.0 for the RBF kernel function of SVR, and the proposed algorithm achieved 94% classification accuracy with the parameter of the RBF 0.08, 12 feature selection.

  • PDF

Frequency-Cepstral Features for Bag of Words Based Acoustic Context Awareness (Bag of Words 기반 음향 상황 인지를 위한 주파수-캡스트럴 특징)

  • Park, Sang-Wook;Choi, Woo-Hyun;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.248-254
    • /
    • 2014
  • Among acoustic signal analysis tasks, acoustic context awareness is one of the most formidable tasks in terms of complexity since it requires sophisticated understanding of individual acoustic events. In conventional context awareness methods, individual acoustic event detection or recognition is employed to generate a relevant decision on the impending context. However this approach may produce poorly performing decision results in practical situations due to the possibility of events occurring simultaneously or the acoustically similar events that are difficult to distinguish with each other. Particularly, the babble noise acoustic event occurring at a bus or subway environment may create confusion to context awareness task since babbling is similar in any environment. Therefore in this paper, a frequency-cepstral feature vector is proposed to mitigate the confusion problem during the situation awareness task of binary decisions: bus or metro. By employing the Support Vector Machine (SVM) as the classifier, the proposed feature vector scheme is shown to produce better performance than the conventional scheme.

An improved cross-correlation method based on wavelet transform and energy feature extraction for pipeline leak detection

  • Li, Suzhen;Wang, Xinxin;Zhao, Ming
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.213-222
    • /
    • 2015
  • Early detection and precise location of leakage is of great importance for life-cycle maintenance and management of municipal pipeline system. In the past few years, acoustic emission (AE) techniques have demonstrated to be an excellent tool for on-line leakage detection. Regarding the multi-mode and frequency dispersion characteristics of AE signals propagating along a pipeline, the direct cross-correlation technique that assumes the constant AE propagation velocity does not perform well in practice for acoustic leak location. This paper presents an improved cross-correlation method based on wavelet transform, with due consideration of the frequency dispersion characteristics of AE wave and the contribution of different mode. Laboratory experiments conducted to simulate pipeline gas leakage and investigate the frequency spectrum signatures of AE leak signals. By comparing with the other methods for leak location identification, the feasibility and superiority of the proposed method are verified.

Detecting the Baryon Acoustic Oscillations in the N-point Spatial Statistics of SDSS Galaxies

  • Hwang, Se Yeon;Kim, Sumi;Sabiu, Cristiano G.;Park, In Kyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.72.3-73
    • /
    • 2021
  • Baryon Acoustic Oscillations (BAO) are caused by acoustic density waves in the early universe and act as a standard ruler in the clustering pattern of galaxies in the late Universe. Measuring the BAO feature in the 2-point correlation function of a sample of galaxies allows us to estimate cosmological distances to the galaxies mean redshift, , which is important for testing and constraining the cosmology model. The BAO feature is also expected to appear in the higher order statistics. In this work we measure the generalized spatial N-point point correlation functions up to 4th order. We made measurements of the 2, 3, and 4-point correlation functions in the SDSS-III DR12 CMASS data, comprising of 777,202 galaxies. The errors and covariances matrices were estimated from 500 mock catalogues. We created a theoretical model for these statistics by measuring the N-point functions in halo catalogues produced by the approximate Lagrangian perturbation theory based simulation code, PINOCCHIO. We created simulations using initial conditions with and without the BAO feature. We find that the BAO is detected to high significance up to the 4-point correlation function.

  • PDF