• Title/Summary/Keyword: acoustic device

Search Result 323, Processing Time 0.027 seconds

Audio Signal Processing and System Design for improved intelligibility in Conference Room (회의실의 명료성(STI) 향상을 위한 오디오신호 처리 및 시스템 설계)

  • Kang, Cheolyong;Lee, Seokjoo;Jo, Kwangyeon;Lee, Seonhee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.225-232
    • /
    • 2017
  • Recently, the development of digital transmission technology of audio signals and the introduction of audio network equipment using digital transmission technology have been made. As a result, audio network technology and equipment are actively applied to the design and construction of audio systems. The meeting room is a place where a large number of participants exchange opinions and communicate with each other. In addition to using an electric acoustic device such as a microphone and a speaker, it improves the intelligibility of the conference room through an example using an audio network.

Development of Cone-Shaped Electrode for Promontory Stimulation Electrically Auditory Brainstem Response (와우 갑각 전기자극 뇌간유발반응용 원추형 전극의 개발)

  • Heo, Seung-Deok;Jung, Dong-Keun;Kang, Myung-Koo;Kim, Lee-Suk;Ko, Do-Heung
    • Speech Sciences
    • /
    • v.10 no.4
    • /
    • pp.181-187
    • /
    • 2003
  • This paper introduces a new zinc coated copper wire electrode with coiled cone shape which has low surface resistance and tolerance to the motion artifact for promontory stimulation electrically auditory brainstem responses (PSEABR). Auditory brainstem responses (ABR) can be used to predict hearing threshold level with a great deal of accuracy particularly for a young child who cannot cooperate mechanically and some hearing impaired who are exaggerating a hearing loss for economic compensation. While severe profound sensorineural hearing losses may not be implemented by auditory potentials, PSEABR is proven as a useful tool even for some sensorineural related hearing impaired. It was shown that PSEABR gives the electrical stimuli to promontory of the cochlear instead of giving acoustic stimuli. For this reason, PSEABR can be used as an alternative for cochlear implantation, and can also be used as an optimal device selection and neural information for MAP. It was found that the role of electrode is very important in PSEABR. Even though this cone-shaped electrode was applied in animal experiments, waveforms are well produced by PSEABR. Thus, it was concluded that cone-shaped electrode turned out to be a useful preoperative audiological evaluation tool in deciding time for cochlear implantation surgery.

  • PDF

Study on Optical Properties of Lithium niobate using Chemical Mechanical Polishing (화학 기계적 연마에 의한 리튬 니오베이트의 광학 특성에 관한 연구)

  • Jeong, Suk-Hoon;Kim, Young-Jin;Lee, Hyun-Seop;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.121-122
    • /
    • 2008
  • Lithium Niobate (LN:LiNbO3) is a compound of niobium, lithium and oxygen. The characteristics of LN are piezoelectricity, ferroelectricity and photoelectricity, and which is widely used in surface acoustic wave (SAW). To manufacture LN device, the LN surface should be a smooth surface and defect-free because of optical property, but the LN material is processed difficult by traditional processes such as grinding and mechanical polishing (MP) because of its brittleness. To decrease defects, chemical mechanical polishing (CMP) was applied to the LN wafer. In this study, the suitable parameters scuh as pressure and relative velocity, were investigated for the LN CMP process. To improve roughness, the LN CMP was performed using the parameters that were the highest removal rate among process parameters. And, evaluation of optical property was performed by the optical reflectance and non-linear characteristic.

  • PDF

A Study on the AlN Thin Film on A1$_2$O$_3$ Substrate Prepared by Reactive RF Magnetron Sputtering System for SAW Device Application (A1$_2$O$_3$기판위에 반응성 RF 마그네트론 스퍼터로 증착한 AlN 박막의 SAW소자 응용에 관한 연구)

  • 고봉철;손진운;김경석;엄무수;남창우;이규철
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.288-292
    • /
    • 2003
  • AlM thin film has been deposited on A1$_2$O$_3$ substrate by reactive radio frequency(RF) magnetron sputtering method under various operating conditions such as working pressure, fraction of nitrogen partial pressure, and substrate temperature. Scanning Electron Microscope(SEM), X-ray Diffraction(XRD), and Atomic Force Microscope(AFM) have been measured to find out structural properties and preferred orientation of AlN thin films. SAW velocity of IDTs/AlN/Si structure was about 5038[㎧] at the center frequency of 251.9[MHz] and insertion loss was measured to be relatively low value of 35.6[dB]. SAW velocity of IDTs/AlN/A1$_2$O$_3$ structure was improved to be about 5960[㎧] at the center frequency of 296.7[MHz].

Measurement of the Slider-Disk Contact during Load/Unload process with AE and Electrical Resistance (Load/Unload 시 AE 와 전기저항을 이용한 슬라이더-디스크 충돌측정에 관한 연구)

  • Kim, Seok-Hwan;Lee, Yong-Hyun;Lim, Soo-Cheol;Park, Kyoung-Su;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.4
    • /
    • pp.160-166
    • /
    • 2007
  • In this paper, the measured electrical resistance method is proposed to analyze the ramp-tab contact during the load/unload (L/UL) process. Since this method supplies the voltage change due to the resistance change, we can easily and conveniently identify the ramp-tab contact from the acoustic emission (AE) signal. At first, we carefully deposit the conductive material on the surface of the conventional ramp by sputtering method. The ratio frequency (RF) magnetron co-sputtering system is applied to accomplish the deposited double-layers on the ramp surface. One layer is the stainless steel for the conductive layer and the other is the titanium layer for the cohesive function between the ramp surface and the stainless steel layer. In order to guarantee the stiffness and damping properties of the original ramp, the deposited conductive layer is intended to have very thin thickness. After integration the proposed ramp device into the L/UL system and networking the electrical resistance circuit, the L/UL performance is experimentally evaluated by comparing the measured electrical resistance signal and AE signal.

  • PDF

산화아연 압전 나노전력발전소자 기반 에너지 하베스팅

  • Kim, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.49-49
    • /
    • 2010
  • Nanopiezotronics is an emerging area of nanotechnology with a variety of applications that include piezoelectric field-effect transistors and diodes, self-powered nanogenerators and biosystems, and wireless nano/biosensors. By exploiting coupled piezoelectric and semiconducting characteristics, it is possible for nanowires, nanobelts, or nanorods to generate rectifying current and potential under external mechanical energies such as body movement (handling, winding, pushing, and bending) and muscle stretching, vibrations (acoustic and ultrasonic waves), and hydraulic forces (body fluid and blood flow). Fully transparent, flexible (TF) nanogenerators that are operated by external mechanical forces will be presented. By controlling the density of the seed layer for ZnO nanorod growth, transparent ZnO nanorod arrays were grown on ITO/PES films, and a TF conductive electrode was stacked on the ZnO nanorods. The resulting integrated TF nanodevice (having transparency exceeding 70 %) generated a noticeable current when it was pushed by application of an external load. The output current density was clearly dependent on the force applied. Furthermore, the output current density depended strongly on the morphology and the work function of the top electrode. ZnO nanorod-based nanogenerators with a PdAu, ITO, CNT, and graphene top electrodes gave output current densities of approximately $1-10\;uA/cm^2$ at a load of 0.9 kgf. Our results suggest that our TF nanogenerators are suitable for self-powered TF device applications such as flexible self-powered touch sensors, wearable artificial skins, fully rollable display mobile devices, and battery supplements for wearable cellular phones.

  • PDF

A Study on the Observations of Riverbed Topography Using Multibeam Echo-Sounder Near Baeckma River Leisure Park (멀티빔 음향측심기를 이용한 하상지형 관측에 관한 연구: 백마강 레저파크를 중심으로)

  • Yun, Kong-Hyun;Yang, Joo-Kyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.61-67
    • /
    • 2021
  • With the recent development of bathemetry technology, the hydrographic surveying method has been changed from single beam depth device use to multi beam acoustic sounding technology. Also, various studies have been reported to obtain high accuracy and precision in the process of river bed topographic data. Especially south korea is geographically on three sides of the sea and the river topography is very developed. To build information about the underwater, and riverbed status, the public investigations has been continuously progressed. In this study, We investigasted the riverbed topography near Baeckma river leisure park. for this purpose, In this study, as the first preliminary survey, location of navigational dangerous objects and reefs and the dangerous areas are identified. Also, ground control points is selected for the optimal GPS surveying. Secondary, through test surveying the Gain, TVG, and pulse length are determined. In addition, the investigation of dangerous objects for navigation is also conducted. As the last step, the error analysis are conducted for the acquired data, and this process involves the removal and adjustments of errors. This section includes the analysis of tide level and navigational contributions, and finally generates a submarine topographic map.

Water quality big data analysis of the river basin with artificial intelligence ADV monitoring

  • Chen, ZY;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.219-225
    • /
    • 2022
  • 5th Assessment Report of the Intergovernmental Panel on Climate Change Weather (AR5) predicts that recent severe hydrological events will affect the quality of water and increase water pollution. To analyze changes in water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed, and solar radiation) were compiled into a representative concentration curve (RC), defined using 8.5. AR5 and future use are calculated based on land use. Semi-distributed emission model Calculate emissions for each target period. Meteorological factors affecting water quality (precipitation, temperature, and flow) were input into a multiple linear regression (MLR) model and an artificial neural network (ANN) to analyze the data. Extensive experimental studies of flow properties have been carried out. In addition, an Acoustic Doppler Velocity (ADV) device was used to monitor the flow of a large open channel connection in a wastewater treatment plant in Ho Chi Minh City. Observations were made along different streams at different locations and at different depths. Analysis of measurement data shows average speed profile, aspect ratio, vertical position Measure, and ratio the vertical to bottom distance for maximum speed and water depth. This result indicates that the transport effect of the compound was considered when preparing the hazard analysis.

Usefulness of Color-overlay Pattern of Thyroid Elastic Ultrasonography (갑상선 탄성 초음파 검사 시 칼라 오버레이 패턴의 유용성)

  • Park, Ji-Yeon;Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.45 no.4
    • /
    • pp.341-346
    • /
    • 2022
  • The color overlay pattern of thyroid shear wave elastography applied in this study distinguishes benign and malignant nodules based on the optimal cut-off value of 74.2 kPa. From august 2021 to september 2021, thyroid ultrasound and elastography were performed on 57 patients with thyroid lesions using an ultrasound device RS85 prestige (Samsung Medison, Korea) and a 2-14 MHz linear transducer. In addition, the results of classification by K-TIRADS for each thyroid nodule and the results of classification by color overlay pattern according to the kPa value of acoustic ultrasound were compared and analyzed. In the color overlay pattern, the results classified as 40 people from dark blue to light blue and 17 people from green to red were similar to the K-TIRADS category results, which were classified as 42 benign and 15 malignant. Between blue and light blue, benign, and between green and red, malignant. If the shear wave elastography method is applied before the fine-needle aspiration cytology of the thyroid nodule is performed, the differential diagnosis of thyroid tissue from benign and malignant can be predicted in advance, and it will help to reduce unnecessary invasive tests.

Mechanisms of microparticle propulsion by laser ablation

  • Gojani, A.B.;Menezes, V.;Yoh, J.J.;Takayama, K.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.837-841
    • /
    • 2008
  • Propulsion of gene coated micro-particles is desired for non-intrusive drug delivery inside biological tissue. This has been achieved by the development of a device that uses high power laser pulses. The present paper looks at the mechanisms of micro-particle acceleration. Initially, a high power laser pulse is focused onto the front side of a thin aluminium foil leading to its ablation. The ablation front drives a compression wave inside the foil, thus leading to the formation of a shock wave, which will later reflect from the rear side of the foil, due to acoustic impedance mismatch. The reflected wave will induce an opposite motion of the foil, characterized by a very high speed, of the order of several millimeters per microsecond. Micro-particles, which are deposited on the rear side of the foil, thus get accelerated and ejected as micro-projectiles and are able to penetrate several hundreds of micrometers inside tissue-like material. These processes have been observed experimentally by using high-speed shadowgraphy and considered analytically.

  • PDF