• Title/Summary/Keyword: acoustic characteristics porosity

Search Result 22, Processing Time 0.02 seconds

Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads

  • Chinnapandi, Lenin Babu Mailan;Pitchaimani, Jeyaraj;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.829-843
    • /
    • 2022
  • This manuscript work presents a comprehensive continuum model capable to investigate the effect of porosity on vibro-acoustic behaviour of functionally graded (FG) beams resting on an elastic foundation subjected to thermal and mechanical loadings. Effects of uniform temperature rise and edge compressive load on the sound radiation characteristics are studied in a comparative manner. The numerical analysis is carried out by combining finite element method with Rayleigh's integral. Detailed parametric studies are accomplished, and influences of power law index, porosity volume, porosity distribution and boundary conditions on the vibro-acoustic response characteristics are analyzed. It is found that the vibro-acoustic response under mechanical edge compression is entirely different compared to from that under the thermal load. Furthermore, nature of grading of porosity affects the sound radiation behaviour for both the loads. The proposed model can be used to obtain the suppression performance of vibration and noise FG porous beams under thermal and mechanical loads.

Acoustic Characteristics of Sand Sediment Slab with Water- and Air-filled Pore

  • Roh Heui-Seol;Lee Kang Il;Yoon Suk Wang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.223-226
    • /
    • 2001
  • Acoustic pressure transmission coefficient and phase velocity are measured as the functions of water porosity and air porosity in sand sediment slabs with water- and air-filled pores. Pores in the sand sediment slab we modeled as the structure of circular cylindrical tube shape filled with water and air. The first kind(fast) wave and second kind (slow) wave, identified by Biot, in the solid and fluid mixed medium are affected by the presence of water and air pores. Acoustic characteristics of such porous medium in water are also theoretically investigated in terms of the modified Biot-Attenborough (MBA) model, which uses the separate treatment of viscosity effect and thermal effect in non-rigid porous medium with water- and air-filed pores. The information on the fast waves introduces new concepts of the generalized tortuosity factor and dynamic shape factor.

  • PDF

Effect of Sn Contents on the Microstructure and Acoustic Characteristics of Cu-Sn Alloys (Cu-Sn합금의 미세조직 및 음향특성에 미치는 Sn함량의 영향)

  • Hong, Young-Keun;Lee, Jeong-Keun;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.21 no.2
    • /
    • pp.135-140
    • /
    • 2001
  • Microstructure of the bell made with Cu-Sn alloys was examined by optical and scanning electron microscope and that analyzed quantitatively with image analyzer. Also acoustic characteristics of the bells were measured in detail by using FFT type power spectrum analyzer. ${\alpha}-single$ phases of large grains only were observed in Cu-5%Sn alloy. However mixed structure of primary ${\alpha}-phase$ and eutectoid of ${\alpha}+{\delta}%_o$ was existed in the Cu-Sn alloys with more than 9%Sn. Also the area fraction of eutectoid phases gradually increased with an increased Sn content. From the result of acoustic test, it was found that frequency and tonal intensity decreased with the increased Sn content from 5%Sn to 11%Sn, and those were rather increased with further increase of that. The lowest frequency and tonal intensity were showed in Cu-11%Sn, and porosity decreased considerably frequency and tonal intensity of the bells.

  • PDF

A Study on the Effect of Acoustic Properties on the Absorption Characteristics of Polyester Fiber Materials (폴리에스터 흡음재 흡음특성에의 음향 물성치 영향평가 연구)

  • Park, Hern-Jin;Jeong, Myong-Guk;Shim, Sung-Young;Lee, Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.885-891
    • /
    • 2003
  • Effects of each acoustic property on absorption characteristics of polyester fiber materials has been studied in this paper. It would be impossible for us to measure effects of each acoustic property by experimental method since we cannot make sound-absorbing materials in which only one of the properties is changed. We have adopted a numerical prediction method to carry out parameter studies for each acoustic property. And to get a general behavior of acoustic performance of the materials, the numerical simulation has been repeated to several cases of different bulk density. Finally we have obtained frequency-dependent control factors in the absorption performance which gives us design capability of acoustic absorbing materials.

  • PDF

A Study on the Physical Characteristics of Steel-Wire Sound Absorbing Materials (금속와이어 흡음재의 물리적 특성에 관한 연구)

  • 주경민;이동훈;용호택
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1244-1249
    • /
    • 2002
  • In this study, the physical characteristics of steel-wire sound absorbing materials with different thickness and bulk density is experimentally obtained in terms of the porosity and specific flow resistivity. Based on the experimental results, the following conclusions can be made. The porosities of steel-wire sound absorbing materials are smaller than those of general absorbing materials, which are inversely proportional to the volume densities. For the porosity measurement with a good accuracy, the dynamic correction based on the system compliance should be involved in porosity measurement. In addition, the flow condition for the precise measurement of the specific flow resistivity of steel-wire sound absorbing materials should be limited in the laminar flow region.

  • PDF

Acoustic Characteristics of Sand Sediment with Circular Cylindrical Pores in Water (수중 원통형 다공성 모래퇴적물의 음향특성)

  • 윤석왕;이용주;노희설
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.110-119
    • /
    • 2002
  • Acoustic characteristics of water sediment were experimentally studied in laboratory. Water saturated sand sediment less than the grain size of 0.5 mm diameter is uniformly distributed in an acryl box (100 mm×100mm×42mm) with material thickness 1 mm. Pores in the acryl box are modeled as the structure of cylindrical pore tubes (diameter 3 mm and length 42 mm) filled with water. Cylindrical pore tubes have porosities 0%, 5%, 11%, 18% and 26 % controlled by the tube numbers. Transmitted acoustic waves through sand sediment specimen are analyzed as the functions of porosity and frequency from 0.3 MHz to 4 MHz. Transmitted acoustic waves are mixed with the first-kind wave from whole specimen and the second-kind wane from cylindrical pore tubes. For the center frequency 1 MHz, the first kind wave is dominant but for the center frequency 2.25 MHz, the second kind wave is dominant. In the case of the first-kind wave, as the porosity increases, the transmission coefficient decreases and the sound speed decreases to the sound speed of water. As the frequency increases, the transmission coefficient decreases but the sound speed is almost constant. In the case of the second-kind wave, as the porosity increases, the transmission coefficient increases but the sound speed is almost constant. The transmission coefficient and the sound speed are almost constant as a function of frequency.

Ultrasonic Phase Velocity and Attenuation Coefficient Predicted by Biot's Theory and the MBA Model in Cancellous Bone

  • Lee Kang Il;Yoon Suk Wang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.183-186
    • /
    • 2004
  • Biot's theory and a modified Biot-Attenborough (MBA) model are applied to predict the dependences of acoustic characteristics on frequency and porosity in cancellous bone. The phase velocity and the attenuation coefficient predicted by both theories are compared with previous in vitro experimental measurements in terms of the mixed, the fast, and the slow waves. Biot's theory successfully predicts the dependences of phase velocity on frequency and porosity in cancellous bone, whereas a significant discrepancy is observed between predicted and measured attenuation coefficients. The MBA model is consistent with reported measurements for both dependences of phase velocity and attenuation coefficient on frequency and porosity. Based on the theoretical predictions from the MBA model, it is suggested that the attenuation coefficient of the mixed wave is dominated by the fast wave in the low-porosity region while it is dominated by the slow wave in the high-porosity region. This provides a qualitative explanation for the nonlinear relationship of attenuation of the mixed wave with porosity in cancellous bone.

  • PDF

The Study on Fabrication and Sound Absorption Properties of Al-Zn-Mg-Cu Alloy Foams (Al-Zn-Mg-Cu 발포합금 제조 및 흡음특성에 관한 연구)

  • Jeong, Seung-Reung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.31 no.3
    • /
    • pp.145-151
    • /
    • 2011
  • Metallic foam has been known as a functional material which can be used for absorption properties of energy and sound. The unique characteristics of Al foam of mechanical, acoustic, thermal properties depend on density, cell size distribution and cell size, and these characteristics expected to apply industry field. Al-Zn-Mg-Cu alloy foams was fabricated by following process; firstly melting the Al alloy, thickening process of addition of Ca granule to increased of viscosity, foaming process of addition of titanium hydride powder to make the pores, holding in the furnace to form of cooling down to the room temperature. Metal foams with various porosity level were manufactured by change the foaming temperature. Compressive strength of the Al alloy foams was 2 times higher at 88% porosity and 1.2 times higher at 92% porosity than pure Al foams. It's sound and vibration absorption coefficient were higher than pure Al foams and with increasing porosity.

Nonlinear Impedance Characteristics of Helmholtz Resonator with Tapered Neck (경사진 목을 가지는 헬름홀쯔 공명기의 비선형 임피던스 특성)

  • Seo, Sang-Hyeon;Chung, Hoe-min;Kim, Yang-hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.75-80
    • /
    • 2012
  • Helmholtz resonator is widely used acoustic instrument which has high absorption characteristics at its resonance frequency. Particularly it maintains good performance even in the low frequency region that is difficult to control by general porous absorptive materials. However, under severely high sound pressure level, the absorption characteristics are changed by increase of resistance due to nonlinear behavior of neck impedance. Because of this nonlinear behavior, it is difficult to obtain the expected absorption performance under high sound pressure environment. Thus, in order to prevent excessive rise of resistance, the resonator with neck having cross section dimension decrease away from the entry of the resonator cavity could be suggested. This paper introduces the experiment method and results about nonlinear characteristics of Helmholtz resonator with tapered neck and proposes the approximate nonlinear impedance model.

  • PDF