• Title/Summary/Keyword: acidithiobacillus ferrooxidans

Search Result 24, Processing Time 0.018 seconds

Analysis of Differential-expressed Proteins of Acidithiobacillus ferrooxidans Grown under Phosphate Starvation

  • He, Zhiguo;Zhong, Hui;Hu, Yuehua;Xiao, Shengmu;Liu, Jiarshe;Xu, Jin;Li, Guiyuen
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.545-549
    • /
    • 2005
  • Acidithiobacillus ferrooxidans is one of the most important bacterium used in bioleaching, and can utilize $Fe^{2+}$ or sulphide as energy source. Growth curves for Acidithiobacillus ferrooxidans under phosphate starvation and normal condition have been tested, showing lag, logarithmic, stationary and aging phases as seen in other bacteria. The logarithmic phases were from 10 to 32 hours for Acidithiobacillus ferrooxidans cultivated with normal cultivating condition and from 20 to 60 hrs for Acidithiobacillus ferrooxidans cultivated phosphate starvation. Differences of protein patterns of Acidithiobacillus ferrooxidans growing in case of normal or phosphate starvation were separately investigated after cultivation at $30^{\circ}C$ by the analysis of two-dimensional gel electrophoresis (2-DE), matrix-assisted laser desorption/ionization (MALDI)-Mass spectrometry. There were total 6 protein spots identified, which were Recombination protein recA, RNA helicase, AP2 domain-containing transcription factor, NADH dehydrogenase I chain D, Hyothetical protein PF1669, and Transaldolase STY3758. From the 6 identified protein spots, 3 proteins were found to be decreased in expression at the cultivating condition of phosphate starvation, while another three upregulated.

Leaching Behavior of Heavy Metals from an Ore Containing High Concentration as Utilizing Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans (Acidithiobacillus ferrooxidans와 Acidithiobacillus thiooxidans를 활용한 고농도 비소 함유 광석 내 중금속 용출 거동 연구)

  • Kim, Gahee;Kim, Rina;Kim, Kwanho;You, Kwang-suk
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.14-23
    • /
    • 2021
  • To investigate the potential for leaching of heavy metals by bacteria from ores stacked on actual mining sites, leaching tests of a complex metallic ore (Pb-Zn-As ore) were conducted over 60 days using acidophile bacteria Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans under initial acidic conditions. Initially, a small amount of heavy metals was leached due to the initial acidic conditions. After 20 days, when A. thiooxidans in the reactor was adapted to the ore, the amount of leached heavy metals rapidly increased; the concentrations of leached arsenic, iron, and zinc reached a maximum of 2800, 3700, and 2500 mg/L, respectively. On the other hand, in the presence of A. ferrooxidans or in the control test without bacteria, heavy metals, except zinc, were barely detected in leaching. Through this study, it was confirmed that (i) bacteria could leach heavy metals at mining sites under acidic conditions and (ii) leaching of heavy metals from a high arsenic-containing ore by A. thiooxidans was more significant than that by A. ferrooxidans.

Kinetics of $Fe^{2+}$ Oxidation by Acidithiobacillus ferrooxidans Using Total Organic Carbon Measurement

  • Lom, In-Soo;Jang, Hyun-Young;Lee, Jong-Un
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.268-272
    • /
    • 2002
  • Kinetic experiments on the biological oxidation of $Fe^{2+}$ by Acidithiobacillus ferrooxidans were conducted by measuring the total organic carbon content. The total organic carbon in the solution was determined with different initial concentrations of $Fe^{2+}$(4, 9, 15, and 20 mg/ml). The growth of At. ferrooxidans and substrate utilization were described by the Monod expression. The total organic carbon was found to be an indicator of the biomass concentration and thus may be effectively utilized for estimating cell growth rates in kinetic model development.

Toxicity Evaluation of Complex Metal Mixtures Using Reduced Metal Concentrations: Application to Iron Oxidation by Acidithiobacillus ferrooxidans

  • Cho, Kyung-Suk;Ryu, Hee-Wook;Choi, Hyung-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1298-1307
    • /
    • 2008
  • In this study, we investigated the inhibition effects of single and mixed heavy metal ions ($Zn^{2+},\;Ni^{2+},\;Cu^{2+},\;and\;Cd^{2+}$) on iron oxidation by Acidithiobacillus ferrooxidans. Effects of metals on the iron oxidation activity of A. ferrooxidans are categorized into four types of patterns according to its oxidation behavior. The results indicated that the inhibition effects of the metals on the iron oxidation activity were noncompetitive inhibitions. We proposed a reduced inhibition model, along with the reduced inhibition constant ($\alpha_i$), which was derived from the inhibition constant ($K_I$) of individual metals and represented the tolerance of a given inhibitor relative to that of a reference inhibitor. This model was used to evaluate the toxicity effect (inhibition effect) of metals on the iron oxidation activity of A. ferrooxidans. The model revealed that the iron oxidation behavior of the metals, regardless of metal systems (single, binary, ternary, or quaternary), is closely matched to that of any reference inhibitor at the same reduced inhibition concentration, $[I]_{reduced}$, which defines the ratio of the inhibitor concentration to the reduced inhibition constant. The model demonstrated that single metal systems and mixed metal systems with the same reduced inhibitor concentrations have similar toxic effects on microbial activity.

Structure Analysis of 16S rDNA Sequences from Strains of Acidithiobacillus ferrooxidans

  • Peng, Hong;Yang, Yu;Li, Xuan;Qiu, Guanzhou;Liu, Xueduan;Huang, Jufang;Hu, Yuehua
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.178-182
    • /
    • 2006
  • Four strains of Acidithiobacillus ferrooxidans with different iron oxidation capacity were isolated from different mine drainage stations. The 16S rRNA gene of these strains were cloned and sequenced. Based on our sequences analysis on the four strain and the data on the other strains deposited in Genbank, all A. ferrooxidans may be classified into three phylogenetic groups. The analysis data showed that nucleotide variables (signature sites) were detected in 21 positions, and most of them were found in the first 800bp from 5' terminal except position 970 and 1375. Interestingly, the first 13 signature sites were located in two main regions:the first region (position 175-234) located in V2 while the second region (position 390-439) were detected in constant region between V2 and V3. Furthermore, the secondary structure and minimal free energy were determined in two regions among strains of three groups. These results may be useful in characterizing the microevolutionary mechanisms of species formation and monitoring in biohydrometallurgical application.

Inhibition of Growth and Activity of Iron Oxidizing Bacteria for the Prevention of Acid Mine Drainage Production (철산화 박테리아의 생장 및 활성 억제를 통한 산성광산배수의 발생 저감)

  • Park, Youngtae;Yang, Jungseok;Kwon, Manjae;Yun, Hyunshik;Ji, Minkyu;Jee, Eundo;Lee, Wooram;Ji, Wonhyun;Kwon, Hyunho;Choi, Jaeyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.5-11
    • /
    • 2012
  • Acid mine drainage (AMD) is one of the most severe environmental problem that results from the oxidation of pyrite $(FeS_2)$ and various other metal sulfides. In this study, the influence of microorganism was tested on the process where AMD was released and the method to inhibit AMD generated by microorganisms at abandoned mine area. The activity and growth rate of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, common microorganisms affecting AMD occurrence, were measured. Chlorine dioxide $(ClO_2)$, NaCl, or surfactant (ASOR-770) was used as an inhibitor for working on activity and growth of microorganism. Among the three inhibitors, 10ppm of chlorine dioxide was the most effective inhibitor for AMD control due to the reduced the activity and growth of microorganisms by 20%.

Assembly Mechanism of [$Fe_2S_2$] Cluster in Ferredoxin from Acidithiobacillus ferrooxidans

  • Chen, Qian;Mo, Hongyu;Tang, Lin;Du, Juan;Qin, Fang;Zeng, Jia
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.124-128
    • /
    • 2011
  • Ferredoxin is a typical iron-sulfur protein that is ubiquitous in biological redox systems. This study investigates the in vitro assembly of a [$Fe_2S_2$] cluster in the ferredoxin from Acidithiobacillus ferrooxidans in the presence of three scaffold proteins: IscA, IscS, and IscU. The spectra and MALDI-TOF MS results for the reconstituted ferredoxin confirm that the iron-sulfur cluster was correctly assembled in the protein. The inactivation of cysteine desulfurase by L-allylglycine completely blocked any [$Fe_2S_2$] cluster assembly in the ferredoxin in E. coli, confirming that cysteine desulfurase is an essential component for iron-sulfur cluster assembly. The present results also provide strong evidence that [$Fe_2S_2$] cluster assembly in ferredoxin follows the AUS pathway.

Influence of sludge solids content on sludge dewaterability using bioleaching

  • Wong, Jonathan W.C.;Zhou, Jun;Zhou, Lixiang;Kurade, Mayur B.;Selvam, Ammaiyappan
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.199-206
    • /
    • 2014
  • Dewatering is an extremely important step in wastewater treatment process to reduce the final sludge volume in order to minimize the cost of sludge transportation and disposal. In the present study, the effect of different sludge solids content (1, 2 and 3.8%) on the dewaterability of anaerobically digested sludge using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was studied. The pH reduction rate was higher during initial process in the sludge having low solids content, but after 48 h of bioleaching, similar pH of below 3 was observed with all the different solids content. Bio-oxidation rate of $Fe^{2+}$ was initially higher in sludge with low solids content, but 100% $Fe^{2+}$ was oxidized within 60 h in all the three treatment levels. Compared to the control, specific resistance to filtration was reduced by 75, 78 and 80% in the sludge with a solids content of 1, 2 and 3.8% respectively, showing improvement in dewaterability with an increase in sludge solids content. Sludge effluent quality and sludge settling rate were also improved in treatments with higher solids content after the bioleaching process.

Aspartyl-tRNA Synthetase from Acidithiobacillus ferrooxidans Aspartylates Both tRNA$^{Asp}$ and tRNA$^{Asn}$

  • Keem, Joo-Oak;Choi, Soon-Yong;Koh, Suk-Hoon;Hyun, Sung-Hee;Min, Bok-Kee
    • Biomedical Science Letters
    • /
    • v.13 no.2
    • /
    • pp.105-110
    • /
    • 2007
  • Aspartyl-tRNA synthetase (AspRS) exists in two different forms with respect to tRNA recognition. The discriminating enzyme (D-AspRS) recognizes only tRNA$^{Asp}$, while the non-discriminating one (ND-AspRS) also recognizes tRNA$^{Asn}$ and therefore forms both Asp-tRNA$^{Asn}$ and Asp-tRNA$^{Asp}$. Plus primary sequence distinguishes two general groups of AspRS. There is a predominantly bacterial-type, larger AspRS (about 580 aa) in addition to a shorter archaeal/eukaryotic type (about 430 aa). In vivo data made clear that discriminating and non-discriminating enzymes exist in both groups. The determinants in the protein sequence responsible for tRNA discrimination are not hewn. The AspRS from Acidithiobacillus ferrooxidans might be suggested ND-AspRS fur missing of AsnRS in genomic sequencing data. Therefore, we analyzed the AspRS from A. ferrooxidans with in vitro aminoacylation assay with E. coli unfractionated tRNA, in vivo missense suppression assay with tipA34 mutant and Northern hybridization with probes which were specific with tRNA$^{Asp}$ or tRNA$^{Asn}$. The AspRS from A. ferrooxidans produced more Asp-tRNA than that from E. coli. Only aspS gene from A. ferrooxidans suppressed trpA34 strain in minimal media without tryptophan. Only AspRS from A. ferrooxidans showed mischarged Asp-tRNA$^{Asn}$ band. Therefore, AspRS from A. ferrooxidans is definitely ND-AspRS.

  • PDF