• Title/Summary/Keyword: acid soil

Search Result 1,951, Processing Time 0.029 seconds

Effects of Moisture, Temperature, and Characteristics of two Soils on Imazamethabenz Degradation (토양 수분, 온도, 특성이 imazamethabenz 분해에 미치는 영향)

  • Joo, Jin-H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.245-254
    • /
    • 2001
  • Effects of soil moisture and temperature on the degradation rate of imazamethabenz were studied in two soils, a Declo sandy loam soil with 1.5% organic matter and pH of 8.0, and a Pancheri silt loam soil with 2.1% organic matter and pH of 7.7. Soils were incubated for 12 weeks under controlled conditions. Treatments were a factorial arrangements with combinations of three soil moistures (45, 75, 100% of field capacity) and two soil temperatures (20, 30C). Imazamethabenz degradation followed first-order kinetics for all soil moisture-soil temperature combinations. Imazamethabenz degradation rate was proportional to increase of soil moisture and temperature. Soil moisture effect on imazamethabenz degradation was greater when soil moisture was increased from 45 to 75% of field capacity (half-life decreased 2.6 fold) than when moisture increased from 75 to 100% of field capacity (half-life decreased 1.2 fold). Imazamethabenz degradation occurred more rapidly in the Pancheri silt loam than the Declo sandy loam soil. Formation of imazamethabenz acid from imazamethabenz followed a quadratic trend for most soil-moisture-soil temperature combinations. Imazamethabenz acid formation initially increased at earlier stages, but later gradually decreased. In most cases, increasing soil moisture and temperature appeared to accelerate it's acid breakdown to other metabolites.

  • PDF

Evaluating Soil Carbon Changes in Paddy Field based on Different Fraction of Soil Organic Matter

  • Seo, Myung-Chul;Cho, Hyeon-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.736-743
    • /
    • 2015
  • Organic matter plays important roles in soil ecosystem in terms of carbon and nitrogen cycles. Due to recent concerns on climate change, carbon sequestration in agricultural land has become one of the most interesting and debating issues. It is necessary to understand behavior of soil carbon for evaluating decomposition or sequestration of organic matter and analyzing potential carbon decomposition pattern about the kinds of organic matter sources to cope with well. In order to evaluate decomposition of soil carbon according to organic material during cultivating rice in paddy field, we treated organic material such as hairy vetch, rice straw, oil cake fertilizer, and manure compost at $50{\times}50{\times}20cm$ blocks made of wood board, and analyzed carbon contents of fulvic acid and humic acid fraction, and total carbon periodically in 2013 and 2014. Soil sampling was conducted on monthly basis. Four Kinds of organic matter were mixed with soil in treatment plots on 2 weeks before transplanting of rice. The treatment of animal compost showed the highest changes of total carbon, which showed $7.9gkg^{-1}$ in May 2013 to $11.6gkg^{-1}$ in October 2014. Fulvic acid fraction which is considered to easily decompose ranged from 1 to $2gkg^{-1}$. Humic acid fraction was changed between 1 to $3gkg^{-1}$ in all treatments until organic material had been applied in 2014. From May to August in the second year, the contents of humic acid fraction increased to about $4gkg^{-1}$. The average of humic fraction carbon at treatments of animal compost was recorded highest among treatments during two years, $2.1gkg^{-1}$. The treatment of animal compost has showed the lowest ratio of fulvic acid fraction, humic acid fraction compared with other treatments. The average ratio of fulvic fraction carbon in soil ranged from 16 to 20%, and humic fraction carbon ranged from 19 to 22%. In conclusion, animal compost including wood as bulking agent is superior in sequestrating carbon at agricultural land to other kinds of raw plant residue.

P-hydroxybenzoic acid positively affect the Fusarium oxysporum to stimulate root rot in Panax notoginseng

  • Jing Zhao;Zhandi Wang;Rong Jiao;Qionglian Wan;Lianchun Wang;Liangxing Li;Yali Yang;Shahzad Munir
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.229-235
    • /
    • 2024
  • Background: Plant health is directly related to the change in native microbial diversity and changes in soil health have been implicated as one of the main cause of root rot. However, scarce information is present regarding allelopathic relationship of Panax notoginseng root exudates and pathogenic fungi Fusarium oxysporum in a continuous cropping system. Methods: We analyzed P. notoginseng root exudate in the planting soil for three successive years to determine phenolic acid concentration using GC-MS and HPLC followed by effect on the microbial community assembly. Antioxidant enzymes were checked in the roots to confirm possible resistance in P. notoginseng. Results: Total 29 allelochemicals in the planting soil extract was found with highest concentration (10.54 %) of p-hydroxybenzoic acid. The HPLC showing a year-by-year decrease in p-hydroxybenzoic acid content in soil of different planting years, and an increase in population of F. oxysporum. Moreover, community analysis displayed negative correlation with 2.22 mmol. L-1 of p-hydroxybenzoic acid correspond to an 18.1 % population of F. oxysporum. Furthermore, in vitro plate assay indicates that medium dose of p-hydroxybenzoic acid (2.5-5 mmol. L-1) can stimulate the growth of F. oxysporum colonies and the production of macroconidia, as well as cell wall-degrading enzymes. We found that 2-3 mmol. L-1 of p-hydroxybenzoic acid significantly increased the population of F. oxysporum. Conclusion: In conclusion, our study suggested that p-hydroxybenzoic acid have negative effect on the root system and modified the rhizosphere microbiome so that the host plant became more susceptible to root rot disease.

Low Molecular Weight Organic Acids in Brassica pekinensis Rupr. and Growing soil Influenced by Simulated Nitrate Deposition

  • Xie, Wen-Ming;Liu, Xing-Quan;Ko, Kwang-Yong;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.279-284
    • /
    • 2008
  • We investigated whether carboxylate exudation of Brassica pekinensis Rupr. was affected by nitrate deposition from simulated acid rain. A gas chromatographic (GC) analysis was employed for the determination of low molecular weight organic acids (LOA) in rhizosphere soils, bulk soil, roots and leaves of Brassica pekinensis Rupr.. Rhizosphere soils were collected after 8 weeks of plant growth by first removing the bulk soil from the root system and then by mechanical move off the rhizosphere soil that adhered to the root surface with soft brush. Soil and plant materials were simultaneously extracted with the mixture of methanol and sulfuric acid (100:7, v/v). Seven organic acids, oxalic, malonic, fumaric, succinic, maleic, L-malic and citric acid were identified and quantified by GC equipped with FID. Oxalic, L-malic, and citric acids were found in both the bulk and rhizosphere soils, while most LOAs were not detected in the control treatment. On the contrary, except maleic acid, all other organic acids were detected in the leaves and roots of cabbages treated with nitrate deposition.

Effect of Fertilizer Rate and Soil condition on Nonvolatile Organic and Higher Fatty Acids of Flue-cured Tobacco. (황색종 담배의 시비량 및 토양조건에 따른 비휘발성 유기산 및 지방산 함량변화)

  • Jang, G.C.;Choi, J.
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.14 no.2
    • /
    • pp.151-158
    • /
    • 1992
  • Field experiment was conducted to investigate the effects of stalk position, compound fertilizer application rate (N-P2O5-K2O : 10-10-20 : 75, 100, 125kg/03), paddy and upland soil and varieties, NC82 &KF103, on nonvolatile organic and higher fatty acids of flue-cured tobacco. Followed by stalk position, malic, citric, malonic and succinic acid contents were significantly increased with higher stalk position, but oleic and linoleic acid contents were decreased with higher stalk position. The higher application rate of compound fertilizer results in increasing citric, malic, malonic and succinic acid contents, but the contents of higher fatty acids were not significantly influenced by fertilizer application rate. The cured leaf cultivated in paddy soil was higher citric and malic acid contents than in upland soil, but the contents of higher fatty acids have no difference between paddy and upland soil. The variety of KF103 was higher citric and linoleic acid contents than that of NC82, but the contents of higher fatty acids have no difference between varieties.

  • PDF

Effects of Various Amendments on Heavy Metal Stabilization in Acid and Alkali Soils (여러 안정화제가 산성 및 알칼리 토양에서 중금속 안정화에 미치는 영향)

  • Kim, Min-Suk;Min, Hyungi;Kim, Jeong-Gyu;Koo, Namin;Park, Jeong Sik;Bak, Gwan In
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • BACKGROUND: Recent studies using many amendments for heavy metal stabilization in soil were conducted in order to find out new materials. But, the studies accounting for the use of appropriate amendments considering soil pH remain incomplete. The aim of this study was to investigate the effects of initial soil pH on the efficiency of various amendments. METHODS AND RESULTS: Acid soil and alkali soil contaminated with heavy metals were collected from the agricultural soils affected by the abandoned mine sites nearby. Three different types of amendments were selected with hypothesis being different in stabilization mechanisms; organic matter, lime stone and iron, and added with different combination. For determining the changes in the extractable heavy metals, water soluble, Mehlich-3, Toxicity Characteristic Leaching Procedure, Simple Bioavailability Extraction Test method were applied as chemical assessments for metal stabilization. For biological assessments, soil respiration and root elongation of bok choy (Brassica campestris ssp. Chinensis Jusl.) were determined. CONCLUSION: It was revealed that lime stone reduced heavy metal mobility in acid soil by increasing soil pH and iron was good at stabilizing heavy metals by supplying adsorption sites in alkali soil. Organic matter was a good source in terms of supplying nutrients, but it was concerning when accounting for increasing metal availability.

In vitro grown thickened taproots, a new type of soil transplanting source in Panax ginseng

  • Kim, Jong Youn;Kim, Dong Hwi;Kim, Young Chang;Kim, Kee Hong;Han, Jung Yeon;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.409-414
    • /
    • 2016
  • Background: The low survival rate of in vitro regenerated Panax ginseng plantlets after transfer to soil is the main obstacle for their successful micropropagation and molecular breeding. In most cases, young plantlets converted from somatic embryos are transferred to soil. Methods: In vitro thickened taproots, which were produced after prolonged culture of ginseng plantlets, were transferred to soil. Results: Taproot thickening of plantlets occurred near hypocotyl and primary roots. Elevated concentration of sucrose in the medium stimulated the root thickening of plantlets. Senescence of shoots occurred following the prolonged culture of plantlets. Once the leaves of plantlets senesced, the buds on taproots developed a dormant tendency. Gibberellic acid treatment was required for dormancy breaking of the buds. Analysis of endogenous abscisic acid revealed that the content of abscisic acid in taproots with senescent shoots was comparatively higher than that of taproots with green shoots. Thickened taproots were transferred to soil, followed by exposure to gibberellic acid or a cold temperature of $2^{\circ}C$ for 4 mo. Cold treatment of roots at $2^{\circ}C$ for 4 mo resulted in bud sprouting in 84% of roots. Spraying of 100 mg/L gibberellic acid also induced the bud sprouting in 81% roots. Conclusion: Soil transfer of dormant taproots of P. ginseng has advantages since they do not require an acclimatization procedure, humidity control of plants, and photoautotrophic growth, and a high soil survival rate was attained.

Cloning, Overexpression, and Characterization of a Metagenome-Derived Phytase with Optimal Activity at Low pH

  • Tan, Hao;Wu, Xiang;Xie, Liyuan;Huang, Zhongqian;Gan, Bingcheng;Peng, Weihong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.930-935
    • /
    • 2015
  • A phytase gene was identified in a publicly available metagenome derived from subsurface groundwater, which was deduced to encode for a protein of the histidine acid phosphatase (HAP) family. The nucleotide sequence of the phytase gene was chemically synthesized and cloned, in order to further overexpress the phytase in Escherichia coli. Purified protein of the recombinant phytase demonstrated an activity for phytic acid of 298 ± 17 µmol P/min/mg, at the pH optimum of 2.0 with the temperature of 37℃. Interestingly, the pH optimum of this phytase is much lower in comparison with most HAP phytases known to date. It suggests that the phytase could possess improved adaptability to the low pH condition caused by the gastric acid in livestock and poultry stomachs.

Control of phosphoric acid induced volume change in clays using fly ash

  • Chavali, Rama Vara Prasad;Reddy, P. Hari Prasad
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1135-1141
    • /
    • 2018
  • Volume changes of soils induced by inorganic acids cause severe foundation and superstructure failures in industrial buildings. This study aimed to assess the potential of fly ash to control volume changes in soils under acidic environment. Two soils such as black cotton soil predominant with montmorillonite and kaolin clay predominant with kaolinite were used for the present investigation. Both soils exhibited an increase in swelling subjected to phosphoric acid contamination. Ion exchange reactions and mineralogical transformations lead to an increase in swelling and a decrease in compressibility in black cotton soil, whereas phosphate adsorption and mineral dissolution lead to an increase in swelling and compressibility in case of kaolin clay. Different percentages of Class F fly ash obtained from Ramagundam national thermal power station were used for soil treatment. Fly ash treatment leads to significant reduction in swelling and compressibility, which is attributed to the formation of aluminum phosphate cements in the presence of phosphoric acid.

Determination of Oxolinic Acid in Paddy Soil by HPLC Coupled with UV Detector (HPLC-UV검출기를 이용한 논토양 중 oxolinic acid 분석)

  • Lo, Seog-Cho;Ma, Sang-Yong;Han, Seong-Soo
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.303-310
    • /
    • 2005
  • This study was performed to examine analytical method of a quinolone compound, oxolinic acid in paddy soil by HPLC coupled with UV detector. Two types of soil texture in different regions were used for this experiment. Oxolinic acid was extracted by a 4 M-KOH : MeOH(1 : 3, v/v) mixtures and acidified followed by liquid-liquid partitioning in dichloromethane. Dichlormethane layer was dehydrated, evaporated and analyzed by HPLC (262 nm). Retention time was 10.2 min. The standard calibration curve of oxolinic acid showed linearity ($r^2>0.999^{**}$, y=378.99x+135.08) in the range of $1{\sim}40$ ng. The mean recoveries, evaluated from fortified soil samples at two concentration levels of 0.2 mg/kg and 1.0 mg/kg, were $90.9{\pm}4.52%$(C.V. 4.97%) and $95.0{\pm}0.23%$(C.V. 0.24%) for soil 1 and $92.2{\pm}1.15%$(C.V. 1.25%) and $93.1{\pm}0.31%$ (C.V. 0.33%) for soil 2, respectively The detection limits of two types of soils were same as 0.05 ppm. Overall, the present analytical method of oxolinic acid by HPLC coupled with UV detector seems to be used reasonably.