• Title/Summary/Keyword: acid polysaccharide

Search Result 339, Processing Time 0.021 seconds

Effect of Ginseng Polysaccharide on the Stability of Lactic Acid Bacteria during Freeze-drying Process and Storage

  • Yang, Seung-Hyun;Seo, Sung-Hoon;Kim, Sang-Wook;Choi, Seung-Ki;Kim, Dong-Hyun
    • Archives of Pharmacal Research
    • /
    • v.29 no.9
    • /
    • pp.735-740
    • /
    • 2006
  • Lactic acid bacteria (LAB) quickly attenuate or are killed during the freeze-drying process and storage. The effect of some natural polysaccharides, which are known as potent antitumor and immunomodulating substances, on the viability of the LAB, Lactobacillus acidophilus and Bifidobacterium breve, on freeze-drying and storage were investigated. Among the polysaccharides tested, red ginseng polysaccharide (RGP) and chitosan significantly inhibited the cell death of the LAB during freeze-drying, and fucoidan and RGP most potently protected the cell death of the LAB during storage. The stabilities of the LAB on the addition of RGP and fucoidan were comparable to that of skimmed milk. However, white ginseng polysaccharide (WGP) did not promote storage stability. When 5% skimmed milk/5% RGP treated LAB were freeze-dried and stored, their viabilities were found to be significantly higher those treated with 5% or 10% RGP. The stabilizing effect of 5% RGP/5% skimmed milk during LAB freeze-drying and storage stability was comparable to that of treatment with 10% skimmed milk. Based on these findings, we believe that RGP beneficially improves the stability of LAB during the freeze-dry process and storage.

Antitumor Activity of Protein-Plysacharides Produced form Vibrio anguillarum

  • Yu, Byeong-Ho;Chi, Boung-Ho;Kim, Dong-Suck;Jang, Mi-Kyung;Kim, Hae-Sung;Chung, Soo-Ja
    • Journal of Food Hygiene and Safety
    • /
    • v.3 no.3
    • /
    • pp.111-116
    • /
    • 1988
  • The antitumor activity of protein-polysaccharide produced by a strain, Vibrio anguilfarum, No. 17 isolated from sea water was investigated. The extracellular protein,polysaccharide used in this experiment was obtained through the cultivation of Vibrio anguillarum No. 17 at $25^{\circ}C$ for 5-7 days in the sea water medium containing 0.5% peptone and 0.1% yeast extract. The compositional monosaccharides of protein-polysaccharide were xylose, mannose, galactose, glucose and fructose in order and its major amino acids were glutamic acid, serine and aspartic acid. The antitumor activity of the protein-polysaccharide at a dose of 0.5mg/kg/day or 5mg/kg/day against Sarcoma-180 in mice were 20.9% and 43.9%, respectively.

  • PDF

Effect of Astragalus membranaceus-postbiotics Polysaccharide Changed by Lactic Acid Bacteria on Macrophage (유산균에 의해 변화된 황기-포스트바이오틱스 다당류가 대식세포에 미치는 영향)

  • Yeon Suk Kim;Hyun Young Shin;Won Bi Jeong;Eun Ji Ha;Ja Pyeong Koo;Ji-Young Shin;Kwang-Won Yu
    • The Korean Journal of Food And Nutrition
    • /
    • v.37 no.1
    • /
    • pp.17-29
    • /
    • 2024
  • To increase industrial applicability of Astragalus membranaceus (AM) as immunostimulating materials, hot-water extract (AME) was prepared from AM and fermented with Kimchi-lactic acid bacteria (Lactobacillus sakei & Leuconostoc mesenteroides) to prepare fermented AM-postbiotics (FAME). Although FAME prepared from AM-postbiotics did not show a significant enhancement in macrophage stimulating activity compared to non-fermented AME, crude polysaccharide (FAME-CP) fractionated by EtOH precipitation from FAME showed significantly higher macrophage stimulating activity than AME-CP. Compared to AME-CP, FAME-CP showed dramatic changes in component sugar and molecular weight distribution. FAME-CP was a polysaccharide with a major molecular weight distribution of 113.4 kDa containing Man (44.2%), Glc (19.3%), Gal (10.2%), GalA (10.2%), and Ara (7.4%) as sugar components. FAME-CP with enhanced macrophage stimulatory activity not only increased expression levels of mRNA genes encoding macrophage-activated factors (iNOS, TNF-α, MCP-1, IL-6, and COX-2), but also led the nuclear translocation of activated p65 and c-Jun. In conclusion, crude polysaccharide from AM-postbiotics fermented with lactic acid bacteria could increase industrial applicability as a functional material with enhanced immunostimulating activity than AME-CP.

Viscosity Change of Polysaccharide, Methylan by Acids Content (다당류 메틸란의 산 성분 함량에 따른 점도의 변화)

  • Kim, Sang-Yong;Kim, Jung-Hoe;Oh, Deok-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1151-1157
    • /
    • 1997
  • The chemical identities of purified polysaccharide, methylan, were analyzed by various chemical methods. The polysaccharide contained 79%(w/w) sugar, 6% protein, and 16% organic acids such as uronic acid, pyruvic acid, and acetic acid. With proceeding fermentation, the acids content in methylan increased from 10% at 34 hr to 17% at 72 hr, and the viscosity of methylan in the same concentration also increased. The correlation between viscosity and acid content in methylan was studied using chemically or biologically modified methylan. Methylan with a high content of pyruvic acid exhibited a high apparent and an intrinsic ·viscosity. When the pyruvic acid content of methylan with the same content of uronic acid was increased 1%, apparent viscosity and intrinsic viscosity increased 290 cp and 6 dL/g, respectively. Methylan with a high content of uronic acid exhibited a high apparent and an intrinsic viscosity. When the uronic acid content of methylan with the same content of pyruvic acid was increased 1%, apparent viscosity and intrinsic viscosity increased 85 cp and 1.5 dL/g, respectively. It was found that the increased viscosity of methylan resulted from the increased content of organic acids in methylan, and pyruvic acid was more an important factor contributed to the increase of methylan viscosity than uronic acid.

  • PDF

Inhibition of Helicobacter pylori Adhesion by Acidic Polysaccharide Isolated from Artemisia capillaris

  • Woo, Jeung-S.;Ha, Byung-H.;Kim, Tae-G.;Lim, Yoon-Gho;Kim, Kyung-H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.853-858
    • /
    • 2003
  • Helicobacter pylori specifically adhere to host cells through a number of putative receptors and ligands, mainly based on carbohydrate-protein interactions. Polysaccharide fractions isolated from the leaves of Artemisia capillaris showed different inhibitory activities against H. pylori adhesion by using hemagglutination assay. Among these fractions, an acidic polysaccharide fraction FlA showed highly effective inhibitory activity, and its minimum inhibition concentration was 0.63 mg/ml. The inhibition results by the hemagglutination assay were consistent with those obtained by the enzymelinked glycosorbent assay, which was developed by the conjugation of horseradish peroxidase with fetuin, a sialic acid-containing glycoprotein which was specific to H. pylori adhesion. FlA contained the highest carbohydrate content among polysaccharide fractions, and no protein was detectable when further purified by gel filtration FPLC. Sugar composition analysis using GC revealed the highest amount of galacturonic acid among sugars, which suggests that FlA contains essentially acidic polysaccharides. Our data suggest that acidic polysaccharides may play an important role in the inhibition of H. pylori adhesion to host cells.

Glycosyl-linkages of Acid Soluble Polysaccharide from Green Laver, Enteromopha prolifera (가시파래 산성 수용성 다당의 구성당 결합 특성)

  • Koo Jae Geun;Choi Yong Seok;Ha Jin Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.5
    • /
    • pp.524-528
    • /
    • 2002
  • Green layer, Enteromorpha prolifera, is regarded as one of important materials for food processing in Korea. The acidic water-soluble polysaccharide (CPC-PS) isolated from the alga with hot water and cetylpyridium chloride was mainly constituted of rhamnose, xylose, uronic acid and sulfate. To determine the glycosyl-linkages and positions of sulfate by methylation, the CPC-PS was reduced and/or sulfates. A marked increase of glucose content in the reduced polysaccharide indicated that glucuronic acid was a major sugar in the polymer and sulfation was deduced to occur on O-3 of rhamnose and O-2 of xylose. According to the methylation analysis of the native, reduced, desulfated and reduced-desulfated polymers, CPC-PS mainly composed of 1,4- and 1,2,3-linked rhamnose 3-sulfate, 1,4-linked xylose 2-sulfate, 1,4-linked xylose and 1,4-linked glucuronic acid. Minor 1,4-linked rhamnose and 1,4,6-linked galactose residues were also detected.

Optimization of Conditions for the Production of Algin-like Polysaccharide by Polyglucuronic Acid C5-Epimerase (Polyglucuronic Acid C5-Epimerase에 의한 Algin 유사 다당류 생산 조건의 최적화)

  • Cho, Gye-Bong;Chang, Pahn-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.147-153
    • /
    • 2000
  • We could produce algin-like biomaterial of polyiduronan using polyglucuronic acid C5-epimerase with polyglucuronic acid prepared by specific oxidation of primary alcohol groups of four kinds of polysaccharides(corn starch, rice starch, sweet potato starch, and cellulose). The enzyme activity was determined by the modified Dische carbazole methodology with the isolated crude enzyme from the supernatant centrifuged at $100,000{\times}g$ for 1 hr after grinding fresh bovine liver. And then, the optimal substrate, pH, and temperature for the enzyme reaction of polyglucuronic acid C5-epimerase were determined as the oxidized sweet potato starch, 7.0, and $30^{\circ}C$, respectively. Conclusively, it could be possible to epimerize polyglucuronic acid in the oxidized sweet potato starch to polyiduronic acid. Therefore, we could obtain algin-like polysaccharide using the oxidized sweet potato starch and polyglucuronic acid C5-epimerase isolated from bovine liver.

  • PDF

Studies on the Chemical Structure of the New Polysaccharide C - (The New Polysaccharides of Gum Tragacanth. II) - (Tragacanth gum 의 신다당류(新多糖類) C 의 화학구조(化學構造) - Tragacanth gum의 신다당류(新多糖類)에 관(關)한 연구(硏究) 제2보(第二報) -)

  • Lee, Sung-Hwan
    • Applied Biological Chemistry
    • /
    • v.3
    • /
    • pp.25-48
    • /
    • 1962
  • The polysaccharide C prepared from gum tragacanth powder (U. S. P. grade) by the precipitation method with 85% ethanol was a neutral polysaccharide, $[{\alpha}]^{30}_D-72.2$. The polysaccharide C consisted of L-rhamnose, D-xylose, L-arabinose and D-galactose in the molar ratio 2:1:17:9 (Table 1, 2, 3, ). The polysaccharide C was methylated with dimethylsulphate and 40% NaOH, and Purdies regent. The hydrolyzate of fully methlated product ($[{\alpha}]^{22}_D-102$ in chloroform, the methoxy content 40.6%) was composed of 2, 3, 5-tri-O-methyl-L-arabofuranose (I), 3,4-di-O-methyl-L-rhamnopyranose (II), 2,3-di-O-methyl-D-xylose (III), 2,3,4-tri-O-methyl-D-galactopyranose (IV), 2,4-di-O-methyl-L-arabopyranose (?), 2,4-di-O-methyl-D-galactose(VI), 2-O-methyl-D-arabinose (VII), and L-arabopyranose(VIII) (Table 4, 5, and Fig. 4). The first partial hydrolysis (A) of the polysaccharide C with 0.05N-HCl for 4.5 hours at $80-85^{\circ}C$ released only L-arabinose: the second hydrolysis (B) with 0.1N-HCl for 5 hours at $80-85^{\circ}C$, L-arabinose and D-galactose; and the third hydrolysis (C) with 0.3N-HCl at $90-95^{\circ}C$ in sealed tube, L-rhamnose, D-xylose, L-arabinose and D-galactose. From the unhydrolyzate A' were found L-rhamnose, D-xylose, L-arabinose, and D-galactose; from B' L-rhamnose, d-xylose, L-arabinose and D-galactose; and from C' D-xylose and D-galactose respectively (Table 6). The periodate consumption and formic acid production of the polysaccharide C were measured at various time intervals. After 120 hours periodat was consumed by 1.23 mole per $C_5H_8O_4$ and formic acid was produced 0.78 mole per $C_5H_8O_4$ (Table 7). Although a definite chemical structure for this polysaccharide C may not be formulated, experimental data, especially, from methylation, partial hydrolysie and determination of its molar ratio, and periodate analysis showed that the polysaccharide C is a highly branched polysaccharide and would be constructed of galactoaraban as a main chain residue and L-arabofuranose, D-galactopyranosyl $(1{\rightarrow}1)$-L-arabofuranose, D-xylopyranosyl $(1{\rightarrow}2)$-L-rhamnopyranosyl $(1{\rightarrow}1)$-L-arabofuranose, and L-rhamnopyranosyl $(1{\rightarrow}1)$-arabofuranose, and D-galactopyranosyl-$(1{\rightarrow}2)$-L-arabopyranosyl-$(1{\rightarrow}1)$-I-arabofuranose as a branch chain or end group (page 21).

  • PDF

Anti-inflammatory Agents from Animals(I) -Anti-inflammatory, Analgesic and Immunosuppressive Activities of Earthworm Allolobophora caliginosatrapezoides Polysaccharide Fractions- (동물성 소염진통제 (I) - 구인다당체분획의 소염.진통 및 면역억제작용 -)

  • 김창종;최윤석;조승길
    • YAKHAK HOEJI
    • /
    • v.35 no.2
    • /
    • pp.123-130
    • /
    • 1991
  • Effects of Allolobophora caliginosatrapezoides (Ac) polysaccharide fractions on the inflammation and hypersensitivity were studied in vivo. It showed that Ac polysaccharide fractions have the significant inhibitory activities of inflammation and hypersensitivity; They inhibited significantly the carrageenin-induced paw edema and acetic acid-induced writhing syndrome. They also inhibited significantly the Arthus reaction and delayed hypersensitivity in the sheep red blood cell-sensitized mice in accordance with the inhibition of haemaglutinin titer, haemolysin titer, plaque-forming cells and rosette-forming cells. They also improved markedly the oxazolone-induced dermatitis in rats dose-dependently. As the above results, it exhibited that Ac polysaccharide fraction inhibited not only humoral immune response, but also cell-mediated immune response. It seemed that methanol and ether extracts have also another physiological active agents.

  • PDF

Purification and Partial Characterization of an Acidic Polysaccharide with Complement Fixing Ability from the Stems of Avicennia Marina

  • Fang, Xubo;Jiang, Bo;Wang, Xiaolan
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.546-555
    • /
    • 2006
  • An acidic polysaccharide fraction that had high anti-complementary activity was isolated from the stems of Grey Mangrove in 0.15% yield. The final fractions was designated HAM-3-IIb-II. The polysaccharide fraction appeared to be homogenous by high performance size exclusion chromatography with an estimated molecular weight of 105 kDa. The isolated polysaccharide is more effective than polysaccharide K (PSK) in its anti-complementary activity at 58 ${\mu}g/ml$ of PSK and 23 ${\mu}g/ml$ of HAM-3-IIb-II that inhibit 50% of complement activity in the complement fixation assay. Structural studies indicated that HAM-3-IIb-II was rich in galacturonic acid along with arabinose, galactose and rhamnose, characterizing a pectin-type polysaccharide, which was also confirmed by FT-IR spectrum. The presence of rich neutral sugar side chains of arabinogalactans may have contributed to the expression of high activity. Traditionally, this mangrove plant is used for medicinal purposes and it appears to have some scientific applications.