• Title/Summary/Keyword: acid hydrolysis condition

Search Result 143, Processing Time 0.029 seconds

Thermophilic Anaerobic Acid Fermentation of Food Wastes after NaOH Addition (NaOH 첨가에 따른 음식물찌꺼기 고온 혐기성 산발효)

  • Ahn, Chul-Woo;Lee, Chul-Seung;Seo, Jong-Hwan;Park, Jin-Sik;Moon, Choo-Yeon;Jang, Seong-Ho;Kim, Soo-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.220-227
    • /
    • 2004
  • This study showed that thermophilic anaerobic acid fermentation of food wastes had an enhanced hydrolysis capability and improvement of acidification efficiency. Influence of pH on the anaerobic hydrolysis and acidogenesis was investigated to determine the proper alkalinity in the thermophilic fermentation of food wastes. The results of putting NaOH as alkali to evaluate hydrolysis and acid fermentation efficiency In acid fermentation process of food wastes showed that the food wastes pretreated with 0.05 g NaOH/g TS had the maximum 12,600 mg/L of VFAs concentration during HRT 3 days in $55^{\circ}C$ thermophilic condition and the maximum 9,700 mg/L of VFAs concentration during HRT 5 days in $35^{\circ}C$ mesophilic condition. The accomplishment of high VFAs concentration resulted from that the main component of food wastes such as cellulose, lignin and etc. is performed active chemical decomposition by alkali in thermophilic condition. The major components of VFAs produced from the thermophilic acid fermentation process of food wastes were the short chain fatty acids such as acetic acid, butyric acid, and propionic acid.

Preparation and Physicochemical Characteristics of Anchovy Hydrolysates Produced by High Hydrostatic Pressure and Enzymatic Hydrolysis Treatment (고압/효소분해 처리에 의한 멸치 가수분해물의 제조 및 특성분석)

  • Kim, Min-Ji;NahmGung, Bae;Kim, Bok-Nam;Lee, Soo-Jeong;Kim, Chul-Jin;Cho, Yong-Jin;Kim, Chong-Tai
    • Food Engineering Progress
    • /
    • v.13 no.2
    • /
    • pp.85-91
    • /
    • 2009
  • High hydrostatic pressure and enzymatic hydrolysis (HPEH) was applied to anchovy in order to produce a natural seasoning ingredient. Total soluble solid, amino nitrogen, total nitrogen and the degree of hydrolysis of anchovy hydrolysates were investigated depending on the process parameters such as temperature, pressure, enzyme concentration and enzyme type. The optimal condition for anchovy hydrolysis was confirmed as temperature 50$^{\circ}C$, reaction time 24 hrs, pressure 50 MPa and enzyme concentration 0.6% in HPEH treatment. HPEH treatment showed more effective in overall properties of anchovy hydrolysis than those of control. All anchovy hydrolysates produced by HPEH treatment were increased more 1.5-2.6 times of total free amino acid than that of control. From these results, the HPEH treatment appears to be an effective and economic process to produce a natural seasoning ingredients.

Pretreatment condition Optimization of Hydrolysis and Water Absorption Behavior of PET Fibrous Assembly (전처리 조건에 따른 PET 섬유 집합체의 가수분해 및 흡수성 거동 연구)

  • Lee, Jun-Hee;Lee, Kwang-Woo;Seo, Mal-Yong;Kang, Ji-Man;Kim, Book-Sung
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.88-88
    • /
    • 2012
  • Applied decanol and nonanol provided more weight loss than applied heptanol and octanol. PET using decanol showed the highest weight loss than other alcohols applied. Sodium hydroxide caused weight loss in PET fabrics because terephthalic acid and ethylene glycol were separated by the hydrolysis of the ester group in the PET chains. The terephthalic acid was neutralized to disodium terephthalate and the reaction results in weight loss in the PET fabrics. The weight loss increased with increasing hydrolysis time because disodium terepthalate was water soluble and the reaction was not reached at equilibrium. Pretreatment alcohols increased water absorption, especially in case of PET applied decanol revealed the highest water absorption. PET applied decanol showed 400% of initial water absorption, and PET applied nonanol revealed 250% of initial water absorption. However, the pristine PET showed 90% initial water absorption, and it revealed 230% maximum water absorption as compared to other alcohols. Also, PET applied decanol, nonanol, octanol and heptanol showed 600%, 400%, 350% and 300% maximum water absorption, respectively. The result implied alcohol length affected on water absorption of PET fibrous assembly. This implies that the microvoid of the PET surface hold water molecules. Surface morphology of PET appears that the pretreatment reagent attacks almost entire surface of the fiber, causing surface etching. As the surface etching progresses, it propagates inside the fiber, resulting in the formation of elongated cavities on the surface.

  • PDF

Hydrolysis of Ginseng Saponins and Quantifications of Saponins, Prosapogenins and Sapogenins in Crude Drug Extracts for Quality Contyol

  • Ko, Sung-Ryong;Choi, Kang-Ju;Cho, Byung-Goo;Nho, Kil-Bong;Kim, Seok-Chang;Jeon, Byeong-Seon;Kim, Chun-Suk
    • Journal of Ginseng Research
    • /
    • v.29 no.3
    • /
    • pp.126-130
    • /
    • 2005
  • Ginseng saponins have been known as main active principles and are quantified as the index components of ginseng and its products for quality control. However ginseng saponins are easily hydrolyzed in acidic solutions of crude drug preparations. Due to the hydrolysis of saponins in acidic condition, it is generally difficult to determine ginseng saponins In crude drug preparations. Ginseng saponins, prosapogenins and sapogenins of crude drug extracts were quantified by HPLC. Ginseng saponins were quantified by HPLC on $Lichrosorb-NH_2$ column with acetonitrile/water/1-butanol(80:20:10, v/v). Ginseng $prosapogenin-Rg_2$ and $-Rg_2$ were extracted with ethyl acetate from $50\%$ acetic acid hydrolyzates of saponin fractions and quantified by HPLC on $Lichrosorb-NH_2$ column with acetonitrile/water(90:10, v/v). Ginseng sapogenins, panafadiol and panaxatriol, were extracted with diethyl ether from $7\%-sulfuric$ acid hydrolyzates of saponin fractions and quantified by HPLC on ${\mu}-Bondapak\;C_{18}$ column with acetonitrile/methano1/chloroform(83:10:7, v/v). These methods of analyses of sapogenins and prosapogenins were more useful for quality control than those of ginseng saponins in some of crude drug preparations.

Synthesis of Ethyl levulinate from Chitosan Using Homogeneous Acid Catalyst (Chitosan으로부터 균일 산 촉매를 이용한 Ethyl Levulinate의 합성)

  • Jeong, Gwi-Taek;Kim, Sung-Koo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.266-272
    • /
    • 2020
  • In this study, the production of ethyl levulinate from chitosan using successive acid-catalyzed hydrolysis and esterification was investigated. To optimize and analysis the reaction factors and heir reciprocal interaction, response surface methodology was introduced. In the effect of water content in ethanol solvent, the production yield of ethyl levulinate was high at 5% water content (or 95% ethanol). As a result of optimization of reaction factors, 30.1% ethyl levulinate yield was obtained under the condition of 200 ℃, 3.19% chitosan, 0.49M sulfuric acid, 5% water content, and 58 min. Finally, the formation yield of ethyl levulinate was tended to enhance by increase of combined severity factor. This result indicated that the potential of chitosan as feedstock for production of chemicals and fuels.

Change in Fructan Content and Antioxidant Activity of Garlic Treated Acid and Heat (산과 열처리에 따른 마늘 Fructan과 항산화활성 변화)

  • Hwang, In-Guk;Kim, Ki-Chan;Choi, Sung-Gil;Lee, Jun-Soo;Jeong, Heon-Sang
    • Journal of agriculture & life science
    • /
    • v.44 no.1
    • /
    • pp.61-67
    • /
    • 2010
  • This study was to investigate the fructose, total fructan, polyphenol contents, and antioxidant activity of garlic treated acid and heat($100{\sim}140^{\circ}C$ for 2 hr). Optimum condition of acid hydrolysis of fructan was 0.3N $H_2SO_4$ and 5 min. As increasing heating temperature, fructose content was significantly increased from 17.1 to 189.9 mg/g whereas total fructan content was decreased from 248.1 to 2.0 mg/g. The fructan was mostly hydrolyzed by heating at $130^{\circ}C$ for 2 hr. The polyphenol contents was increased from 0.85 to 13.74 mg/g increasing heating temperature and also antioxidant activity was significantly increased. The polyphenol contents and antioxidant activity on acid hydrolysate after heating was slightly increased.

Production of Fermentable Sugar from Lipid Extracted Algae using Hot Water Pretreatment (열수전처리를 이용한 탈지미세조류로부터 발효당 생산 공정 개발)

  • Lee, Jihyun;Shin, Seulgi;Choi, Kanghoon;Jo, Jaemin;Kim, JinWoo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.443-447
    • /
    • 2016
  • The microalgae have cellulose as a main structural component of their cell wall and the lignin content in microalgae is much lower than other lignocellulosic biomass. Therefore, fermentable sugar production from microalgae (Tetraselmis KCTC 12236BP) can be carried out under pretreatment without high temperature and high pressure. It was investigated that the effect of hot-water pretreatment using sulfuric acid for lipid extracted algae which is expected to be a next generation biomass. The effects of three major variables including extraction temperature, acid concentration and time on the enzymatic hydrolysis were investigated. Among the tested variables, temperature and acid concentration showed significant effects and optimum pretreatment conditions for the economic operation criteria were obtained as follows: reaction temperature of $120^{\circ}C$, sulfuric acid concentration of 2 mol and pretreatment time of 40 min. Under the optimum conditions of acidic hot water pretreatment, experimentally obtained hydrolysis yield were 95.9% which showed about 2.1 fold higher compared with enzymatic hydrolysis process. Therefore, acid pretreatment under mild condition was proven to be an effective method for fermentable sugar production from lipid extracted microalgae.

Acetone, Butanol, Ethanol Production from Undaria pinnatifida Using Clostridium sp. (Clostridium 종을 이용한 미역으로부터 아세톤, 부탄올, 에탄올 (ABE) 생산)

  • Kwon, Jeong Eun;Gwak, Seung Hee;Kim, Jin A;Ryu, Ji A;Park, Sang Eon;Baek, Yoon Seo;Heo, A Jeong;Kim, Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.236-242
    • /
    • 2017
  • The conversion of marine biomass to renewable energy has been considered an alternative to fossil fuels. Butanol, in particular, can be used directly as a fuel. In this experiment, the brown alga Undaria pinnatifida was selected as a biomass for biobutanol production. Hyper thermal (HT) acid hydrolysis was used as an acid hydrolysis method to produce monosaccharides. The optimal pretreatment conditions for U. pinnatifida were determined as slurry with 10% (w/v) U. pinnatifida content and 270 mM $H_2SO_4$, and heating at $160^{\circ}C$ for 7.5 min. Enzymatic saccharification was carried out with Celluclast 1.5 L, Viscozyme L, and Ultraflo Max. The optimal saccharification condition was 12 U/ml Viscozyme L. Fermentations were carried out for the production of acetone, butanol, and ethanol by Clostridium acetobutylicum KCTC 1724, Clostridium beijerinckii KCTC 1785, and Clostridium tyrobutyricum KCTC 5387. The fermentations were carried out using a pH-control. The optimal ABE fermentation condition determined using C. acetobutylicum KCTC 1724 adapted to 160 g/l mannitol. An ABE concentration of 9.05 g/l (0.99 g/l acetone, 5.62 g/l butanol, 2.44 g/l ethanol) was obtained by the consumption of 24.14 g/l monosaccharide with $Y_{ABE}$ of 0.37 in pH 5.0.

Characteristics of Enzymatic Hydrolysates of Rice Bran and Rice Protein by Mixing Ratio and Hydrolysis Times (미강과 쌀 단백질의 비율과 분해 시간에 따른 효소분해물의 품질 특성)

  • Seon, Yoo Kyung;Goo, Hoo Mo;Park, Kwang Kun;Yang, Eun Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.10
    • /
    • pp.1460-1466
    • /
    • 2016
  • This study was conducted to develop a savory ingredient using rice material. We made hydrolysates with ratios of rice bran and rice protein of 4:0, 3:1, 2:2, and 1:3 (w/w) using commercial enzymes, and then investigated their quality properties. At a ratio of 3:1, nitrogen degradation ratio (NDR), savory taste, and overall acceptability were the highest compared to other ratios. Rice bran and rice protein with a ratio of 3:1 were hydrolyzed for 13 days, and characteristics of the hydrolysate were investigated after 3, 5, 7, 10, and 13 days. Total nitrogen, amino nitrogen, and NDR of the hydrolysate after 10 days were higher than those of other hydrolysates. SDS-PAGE showed that the molecular weight of the hydrolysate peptide became smaller as hydrolysis time increased. Glutamic acid content was highest among all amino acids in the hydrolysate for 13 days. Amino acids related to bitter taste decreased from 5 to 13 days, whereas amino acids related to sweet taste substantially increased over time. Sensory evaluation showed that the hydrolysate after 10 days was best. These results suggest that rice bran and rice protein at a mixing ratio of 3:1 and hydrolysis for 10 days were optimal hydrolysis condition for development of natural savory ingredients.

Optimum Synthesis and Characterization of Precursor Solution for a Hard Coating Silica Film Prepared by Sol-Gel Process

  • Kim, Seon Il;Kim, Gu Yeol;Im, Hyeong Mi;Lee, Bong U;Na, Jae Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.8
    • /
    • pp.817-822
    • /
    • 2000
  • Crack-free hard coating siIica films were prepared by sol-gel processfrom twokinds of silicon alkoxide (tetra-ethoxysilane and methyltrimethoxysilane) and two kinds of alcohol (methanol and isopropyl alcohol) with an acid catalyst,acetic acid. A silicate framework of the precursor solution was investigated by infrared spectros-copy (IR) in the process of hydrolysis and condensation. Theextent of the condensation in the intermediates was elucidated by gel permeation chromatography (GPC) and 29Si-NMR spectroscopy. The hard coating films werecharacterized by IR,scanning electron microscope (SEM), thermo gravimetric analyzer (TGA) and dif-ferential scanning calroimeter (DSC). The synthetic condition for the crack-free and transparent silica film for-mation was optimized interms of starting materials for the precursor solution as well as preparation method of the silica film.