• Title/Summary/Keyword: acid dissolution

Search Result 377, Processing Time 0.027 seconds

Enhanced Dissolution Rate of Metformin HCl via GR-type Tablet with PAA and HPMC (PAA와 HPMC을 이용한 Metformin HCl 함유 GR 타입 정제에 의한 용출율 개선)

  • Seok, Seung-Hun;Choi, Jong-Seo;Hwang, Chang-Hwan;Kang, Chin-Yang
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.51-55
    • /
    • 2008
  • To develop a novel metformin HCl-loaded GR type tablet, various tablets were compressed with poly acrylic acid (PAA) and hydroxypropylmethyl cellulose (HPMC) using a wet granulation, and their physical properties such as swelling rate, hardness and dissolution were then investigated. Among the formulae tested in this study, the tablet prepared with PAA 971 and 974 as disintegrants showed fastest dissolution rate and swelling rate. Furthermore, the tablets prepared with PAA and HPMC improved the swelling rate, hardness and dissolution compared to those prepared with only HPMC. Our results suggested that the tablets prepared with PAA 971, 974 and HPMC might be a potential candidate for gastric retention type tablets.

Dissolution Characteristics of Iron Ion in Soil by the Decontamination Solution (제염용액에 의한 토양 중 철 성분 용해 특성)

  • 원휘준;김계남;정종헌;최왕규;박진호;오원진
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.676-680
    • /
    • 2003
  • Dissolution of magnetite powders by 0.05 M citric acid was investigated at $50^{\circ}C$. All the tests were performed in the pH range between 2.0 to 5.0, which was adjusted using nitric acid or sodium hydroxide. Concentration of each of the dissociated chemical species of citric acid under various solution pHs was calculated using the ionization constants. Variation of zeta potential of magnetite with pH changes was also investigated. The dissolution reaction was explained by comparing the concentration of the dissociated chemical species of citric acid with the zeta potential. Longer than 3 h of induction time was required to dissolve the magnetite. The dissolution behaviour of magnetite was well described by the equation. The physical meaning of each parameter was explained successfully from the model equation.

  • PDF

Dissolution Behavior of Plagioclase in HCl and KOH Solutions (염산과 수산화칼슘 수용액과의 반응에 의한 사장석의 용해 거동)

  • 현성필;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.71-81
    • /
    • 1996
  • Dissolution experiments were conducted to understand chemical nature of weathering of anorthosite from the Hadong area. Anorthosite and plagioclase from it were reacted with HCl or KOH solutions under various conditions concerning such as grain size, initial pH of solutions, and shaking Average composition of plagioclase used in the experiment was Na0.32Ca0.71Al1.71Si2.28O8.Under acidic conditions, solution pH increases rapidly in the initial stage and then gradually to reach palteau. Shaking agitates the reaction rate in the initial stage but does not affect after the system reached steady state. Ca and si concentrations show rapid increase and then gradual increase. Al concentration increases rapidly in the early stage and then decreases. Later decrease was interpreted as the precipitation of an Al-bearing material. Different dissolution rates of different constituents of plagioclase together the with precipitation of al-bearing material might be responsible for the non-stoichiometric dissolution of plagioclase.X-ray diffraction analyses on anorthosite before and after dissolution experiment show dissolution rates differ with different lattice planes of plagioclase. It suggests the crystallographic control on dissolution reaction. X-ray photoelectron spectroscopic result shows that the average composition of plagioclase surface reacted with HCL of initial pH 1.97 for 2000 hours is Na0.20Ca0.26Al1.7Si2.3O8. It means that Na- and Ca-depleted H-feldspar is developed without Al-depleted layer on the surface of plagioclase by reaction with HCl and that dissolution reaction takes place sparsely on the surface of plagioclase. Al and Si are dissolved preferentially over Ca from anorthosite powder in KHO solution. Reaction of acid-reacted anorthosite with KOH solution shows the same Si dissolution behavior as in the fresh anorthosite. This indicates that the Al-depleted and Si-enriched layer does not build up on the acid-reacted surface.

  • PDF

Comparison of Physicochemical Properties between Ursodeoxycholic Acid and Chenodeoxycholic Acid Inclusion Complexes with ${\beta}-Cyclodextrin$ (우르소데옥시콜린산 및 케노데옥시콜린산의 베타시클로덱스트린 포접복합체의 물리화학적 특성비교)

  • Lee, Seung-Yong;Chung, Youn-Bok;Han, Kun;Shin, Jae-Young
    • YAKHAK HOEJI
    • /
    • v.38 no.3
    • /
    • pp.300-310
    • /
    • 1994
  • Physicochemical properties for the inclusion complex of chenodeoxycholic acid(CDCA) and it's $7{\beta}-hydroxy$ epimer ursodeoxycholic acid(UDCA) with ${\beta}-cyclodextrin({\beta}-CyD)$ were studied. The formation of the complex in the solid state were confimed by polarized microscopy and differential scanning calorimetry(DSC). Proton nuclear magnetic resonance$(^1H-NMR)$spectroscopy showed that CDCA and UDCA form an inclusion complex with ${\beta}-CyD$ in aqueous solution. The 1 : 1 stoichiometry of the complex was dextermined by the continuous variation method. From DSC and $^1H-NMR$ studies, there were not any differences between CDCA and UDCA. Complex of CDCA and UDCA showed increase in solubility and dissolution compared with CDCA and UDCA alone, respectively. Solubility pattern of UDCA complex was pH independent but, CDCA complex was like that of CDCA. Dissolution rate increased markedly in case of UDCA complex compared with CDCA complex, especially in acidic pH value.

  • PDF

Effect of Crystal Form(Habit) on Dissolution Rate of Aspirin and Phenacetin (결정형(Habit)이 아스피린과 페나세틴의 용출 속도에 미치는 영향)

  • Cho, Ji-Woon;Sohn, Young-Taek
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.2
    • /
    • pp.65-71
    • /
    • 1990
  • Some studies reported physicochemical factors of drugs affecting solubility and dissolution rate. However, few have been reported about pharmaceutical application of crystal forms (habits). Therefore, using acetylsalicylic acid and phenacetin as model substances, we monitored the effects of crystal forms on the dissolution rates.

  • PDF

Dissolution Characteristics of ph-Dependent Antacid Granules Agglomerated in High Speed Agitation Type Speed Agitation Type Granulator

  • Choi, Woo-Sik;Lee, Jung-Sun
    • Archives of Pharmacal Research
    • /
    • v.18 no.5
    • /
    • pp.314-319
    • /
    • 1995
  • Antacid granules were prepared by agglomeration and powder method in high speed agitation type granulator. The copmositions of the test antacids were sodium bicarbonate nad magnesium carbonate nad a coating material was powder of polyvinylacetal diethyl-aminocacetate (AEA) and an additive material was talc powder. The dissolution characteristics of base from the antacid granules were investigated to evaluate neutralization capacity of hydrochloric profile of base and neutralization behavior, the following results were obtained : The prepared granules showed a pH-dependent dissolution pattern of a base. The dissolution profile of a base was varied with addition of talc powder as well as coating amount of AEA. The relationship between the ratio of dissolution retarded time for 20% and 10% AEA. The relationship between the ratio of dissolution retarded time for 20% AEA coated granules $\theta_{20}/\theta_{10}$ and the diameter reduction of the granules was explained by the rate process of neutralization of hydrochloric acid.

  • PDF

Dissolution Characteristics of Magnesite Ore in Hydrochloric Acid Solution and Removal of Impurity (마그네사이트 광석(鑛石)의 염산용해(鹽酸熔解) 특성(特性) 및 불순물(不純物) 제거)

  • Eom, Hyoung-Choon;Park, Hyung-Kyu;Kim, Chul-Joo;Kim, Sung-Don;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.38-45
    • /
    • 2009
  • Dissolution characteristics of magnesite ore in hydrochloric acid solution and removal of impurity were investigated. The dissolution yield increased with increasing temperature and with decreasing particle size. The optimum conditions for dissolution were found to be reaction period of 120 min, reaction temperature of $80^{\circ}C$ and mean particle size of 100. Under optimal dissolution condition the extraction of Mg was 98%. It was found that most of Si and Al exist in the residue, and they can be removed by filtering. Dissolved impurity ions were precipitated as metal hydroxides by pH adjustment. Polymers were used as coagulants for metal hydroxides and the suitable coagulant dosage was 1mg/100ml of non-ionic polymer.

Removal of Uranium by an Alkalization and an Acidification from the Thermal Decomposed Solid Waste of Uranium-bearing Sludge (알카리화 및 산성화에 의한 우라늄 함유 슬러지의 열분해 고체 폐기물로부터 우라늄 제거)

  • Lee, Eil-Hee;Yang, Han-Beom;Lee, Keun-Young;Kim, Kwang-Wook;Chung, Dong-Yong;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.85-93
    • /
    • 2013
  • This study has been carried out to elucidate the characteristics of the dissolution for Thermal Decomposed Solid Waste of uranium-bearing sludge (TDSW), the removal of impurities by an alkalization in a nitric acid dissolving solution of TDSW, and the selective removal (/recovery) of uranium by an acidification in an carbonate alkali solution, respectively. TDSW generated by thermal decomposition of U-bearing sludge which was produced in the uranium conversion plant operation, was stored in KAERI as a solid-powder type. It is found that the dissolution of TDSW is more effective in nitric acid dissolution than oxidative-dissolution with carbonate. At 1 M nitric acid solution, TDSW was undissolved about 30wt% as a solid residue, and uranium contained in TDSW was dissolved more than 99%. In order to the alkalization for the nitric acid dissolving solution of TDSW, carbonate alkalization is more effective with respect to remove the impurities. At the carbonate alkali solution controlled to about 9 of pH, Al, Ca, Fe and Zn co-dissolved with U in dissolution step was removed about $98{\pm}1%$. On the other hand, U could be recovered more than 99% by an acidification at pH about 3 in a carbonate alkali solution, which was nearly removed the impurities, adding 0.5M $H_2O_2$. It was found that uranium could be selectively recovered (/removed) from TDSW.

Dissolution and Removal of Silicates in Acid Leaching Process (산 침출 시 실리카 광물의 용해 및 제거)

  • Park, Kyung-Ho;Nam, Chul-Woo;Kim, Hyun-Ho
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.3-11
    • /
    • 2015
  • Soluble silica generated from acid leaching process is very difficult to filter and deceases the purity of products, and thus becomes one of hot issues in hydrometallurgy. This paper reviewed the dissolution and reactivities of silicates in acid solution, and the methods for treatment of soluble silica. Removal of silica with alkaline pre-treatment, crystallization to $SiO_2$ and precipitation behaviour of silica with coagulation under acid conditions were briefly described.