• Title/Summary/Keyword: acid dissolution

Search Result 377, Processing Time 0.026 seconds

Hard Anodizing Treatment in Malic Acid Bath mixed with Oxalic Acid (말릭산과 수산혼합욕에서 경질양극 산화처리)

  • Jeong, Yong-Soo;Chang, Do-Yon;Kwon, Sik-Chol
    • Journal of Surface Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.78-86
    • /
    • 1984
  • Hard anodic oxide film was investigated formed on pure aluminium with various temperature (30$^{\circ}-60^{\circ}C$), current densities (1.5-3.0A/$dm^2$) and concentrations(3-15g/l) of oxalic acid in 0.5M malic acid bath. The resulting characteristic of the anodic oxide film obtained were summarized as follows in the view point of physical and mechanical properties in relation with the above process variables. 1. The film thickness increased with oxalic acid concentration and bath temperature, while the reversed phenomena were obtained at a high concentration of oxalic acid and high temperature due to the severe dissolution of the anodic oxide film. 2. The hardness and the abrasion resistance were improved by lowering the addition of oxalic acid and the bath temperature. This feature was directly dependent on the porosity formed on the anodic oxide film. 3. The maximum hardness of anodic oxide film showed Hv 579 in the temperature of 30$^{\circ}C$ with the current density, 2.5A/$dm^2$ in the 0.5M malic acid bath mixed with 5g/l oxalic acid.

  • PDF

Fatigue Crack Growth Behavior of Ni-Cr-Mo Steel under Acid Fog Environment (산성안개 환경하에서 Ni-Cr-Mo 강의 피로크랙전파거동)

  • Kim, Min-Geon;Im, Yong-Ho;Kim, Man-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1841-1846
    • /
    • 2000
  • To examine the effect of acid fog on the corrosion fatigue behavior in structural steel, fatigue tests under acid fog atmosphere were carried out in comparison with distilled water. The corrosive c omponents contained in acid fog pile up the corrosion products on crack face and show a crack branching and crack tip blunting. Therefore, due to these workings crack growth rate was reduced by decreasing the effective stress range in crack tip rather than under distilled water. Also the effect of sulfuric acid, which is the main component of acid fog, and testing speed on fatigue crack growth were examined. It was found that corrosion behavior was remarkably dependent upon pH and Hz rather than components of acid fog. According as pH and testing speed decrease below a specific value, crack growth was accelerated in comparison with distilled water. This reveals that due to liquid having strong acidity and slow speed of test the crack face dissolution was promoted, so crack closure was disturbed in the process of stress descent.

Determination of volatile and residual iodine during the dissolution of spent nuclear fuel (사용 후 핵연료 용해 중 휘발 및 잔류 요오드 분석)

  • Kim, Jung Suk;Park, Soon Dal;Jeon, Young Shin;Ha, Young Keong;Song, Kyuseok
    • Analytical Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.395-406
    • /
    • 2009
  • The determination of iodine in the spent nuclear fuel and the volatile behavior during its acid dissolution have been studied by NAA(neutron activation analysis) and electron probe microanalysis (EPMA). Simulated spent fuels (SIMFUELs) were dissolved in $HNO_3$(1+1) at $90^{\circ}C$ for 8 hours. The iodine remained in a dissolver solution after dissolution, and that condensed in dissolution apparatus and trapped in the adsorbent by volatilization during the dissolution were determined, respectively. The condensed iodine was recovered by the redistillation with $HNO_3$(1+1) after transfer of the dissolver solution. The iodines in the dissolver and redistilled solution were separated by solvent extraction followed by ion exchange or precipitation method and determined by RNAA (radiochemical neutron activation analysis). The ion exchange column and filtration kit used for the isolation of iodine, which were prepared with a polyethylene tube, were used as an insert in the pneumatic tube for neutron irradiation. The iodine volatilized during the dissolution of SIMFUELs was collected in a trapping tube containing Ag-silica gel (Ag-impregnated silica gel) adsorbent, and the distribution of iodine trapped in the adsorbents were determined by EPMA. The adsorbing characteristics shown with the SIMFUELs were compared with those shown with a real spent fuel from the nuclear power plant.

Formation of Acid Mine Drainage and Pollution of Geological Environment Accompanying the Sulfidation Zone of Nonmetallic Deposits: Reaction Path Modeling on the Formation of AMD of Tongnae Pyrophyllite Mine (비금속광상의 황화광염대에 수반되는 산성광산배수의 형성과 지질환경의 오염 : 동래납석광산 산성광산배수의 형성에 관한 반응경로 모델링)

  • 박맹언;성규열;고용전
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.405-415
    • /
    • 2000
  • This study was carried out to understand the formation of acid mine drainage (AMD) by pyrophyllite (so-called Napseok)-rainwater interaction (weathering), dispersion patterns of heavy metals, and patterns of mixing with non-polluted water in the Tongnae pyrophyllite mine. Based on the mass balance and reaction path modeling, using both the geochemistry of water and occurrence of the secondary minerals (weathering products), the geochemical evolution of AMD was simulated by computer code of SOLVEQ and CHILLER. It shows that the pH of stream water is from 6.2 to 7.3 upstream of the Tongnae mine. Close to the mine, the pH decreases to 2. Despite being diluted with non-polluted tributaries, the acidity of mine drainage water maintains as far as downstream. The results of modeling of water-rock interaction show that the activity of hydrogen ion increases (pH decreases), the goncentration of ${HCO_3}^-$ decreases associated with increasing $H^+$ activity, as the reaction is processing. The concentration of ${SO_4}^{2-}$first increases minutely, but later increases rapidly as pH drops below 4.3. The concentrations of cations and heavy metals are controlled by the dissolution of reactants and re-dissolution of derived species (weathering products) according to the pH. The continuous adding of reactive minerals, namely the progressively larger degrees of water-rock interaction, causes the formation of secondary minerals in the following sequence; goethite, then Mn-oxides, then boehmite, then kaolinite, then Ca-nontronite, then Mgnontronite, and finally chalcedony. The results of reaction path modeling agree well with the field data, and offer useful information on the geochemical evolution of AMD. The results of reaction path modeling on the formation of AMD offer useful information for the estimation and the appraisal of pollution caused by water-rock interaction as geological environments. And also, the ones can be used as data for the choice of appropriate remediation technique for AMD.

  • PDF

Evaluation of PLA Fiber Dissolution in Cement Paste and Geopolymer (시멘트 페이스트 및 지오폴리머 내의 PLA 섬유의 용해성 평가)

  • Kim, Joo-Hyung;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.204-211
    • /
    • 2020
  • Poly-Lactic Acid(PLA) fiber is an eco-friendly material and is biodegradable, so it can be utilized for manufacturing porous construction materia ls with interna l pore connection. In this study, domestic PLA fiber products(0.5mm india meter, 1.0mm in length, 10mm in length) were tested for melting at high temperatures and high alkality, and they were incorporated with FA-based geopolymer. Compressive strength was obtained through high temperature curing and alkali activator, however the complete melting of the PLA fiber was not ensured. The previous study handling PLA fiber with 0.003mm in diameter was completely dissolved, but 0.5mm and 1.0mm in diameter showed 42.5% and 33.3% of dissolution ratio, respectively. In addition, the increasing fiber volume led floating fibers during curing, which had a negative effect on its workability and solubility. Although the properties of PLA fiber may vary depending on the raw materials and production conditions, PLA fiber with 0.1mm or less diameter is recommended for porous construction material.

Application of Galvanic Oxidation and Pyrite Dissolution for Sustainable In-Situ Mine Tailings Treatment (갈바닉 산화와 황철석 용해를 이용한 친환경 원위치 광미 무해화 기술)

  • Ju, Won Jung;Jho, Eun Hea;Nam, Kyoungphile
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.279-284
    • /
    • 2016
  • Mine tailings generated during mining activity often contain high concentrations of heavy metals, with pyrite-containing mine tailings in particular being a major cause of environmental problems in mining areas. Chemical cell technology, or fuel cell technology, can be applied to leach heavy metals in pyrite-containing mine tailings. As pyrite dissolves through spontaneous oxidation (i.e. galvanic oxidation) in the anode compartment of the cell, $Fe^{3+}$, sulfuric acid are generated. A decrease in pH due to the generation of sulfuric acid allows heavy metals to be leached from pyrite-containing mine tailings. In this study, pyrite was dissolved for 4 weeks at $23^{\circ}C$ in an acidic solution (pH 2) and in a galvanic reactor, which induces galvanic oxidation, and total Fe leached from pyrite and pH were compared in order to investigate if galvanic oxidation can facilitate pyrite oxidation. The change in the pyrite surface was analyzed using a scanning electron microscope (SEM). Comparing the total Fe leached from the pyrite, there were 2.9 times more dissolution of pyrite in the galvanic reactor than in the acidic solution, and thus pH was lower in the galvanic reactor than in the acidic solution. Through SEM analysis of the pyrite that reacted in the galvanic reactor, linear-shaped cracks were observed on the surface of the pyrite. The study results show that pyrite dissolution was facilitated through the galvanic oxidation in the galvanic reactor, and also implied that the galvanic oxidation can be one remediation option for pyrite-containing mine tailings.

THE INFLUENCE OF pH AND LACTIC ACID CONCENTRATION ON THE FORMATION OF ARTIFICIAL ROOT CARIES IN ACID BUFFER SOLUTION (산 완충용액의 pH 및 유산의 농도가 인공치근우식의 형성에 미치는 영향)

  • Oh, Hyun-Suk;Roh, Byoung-Duck;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.47-60
    • /
    • 2007
  • The purpose of this study is to compare and to evaluate the effect of pH and lactic acid concentration on the progression of artificial root caries lesion using polarizing microscope, and to evaluate the morphological changes of hydroxyapatite crystals of the demineralized area and to investigate the process of demineralization using scanning electron microscope. Artificial root caries lesion was created by dividing specimens into 3 pH groups (pH 4.3, 5.0, 5.5), and each pH group was divided into 3 lactic acid concentration groups (25 mM, 50 mM, 100 mM). Each group was immersed in acid buffer solution for 5 days and examined. The results were as follows : 1. Under polarized microscope, the depth of lesion was more effected by the lactic acid concentration rather than the pH. 2. Under scanning electron microscope, dissolution of hydroxyapatite crystals were increased as the lactic acid concentration increased and the pH decreased. 3. Demineralized hydroxyapatite crystals showed peripheral dissolution and decreased size and number within cluster of hydroxyapatite crystals and widening of intercluster and intercrystal spaces as the pH decreased and the lactic acid concentration increased. 4. Under scanning electron microscope evaluation of the surface zone, clusters of hydroxyapatite crystals were dissolved, and dissolution and reattachment of crystals on the surface of collagen fibrils were observed as the lactic acid concentration increased. 5. Under scanning electron microscope, demineralizatlon of dentin occurred not only independently but also with remineralization simultaneously. In conclusion, the study showed that pH and lactic acid concentration influenced the rate of progression of the lesion in artificial root caries. Demineralization process was progressed from the surface of the cluster of hydroxyapatite crystals and the morphology of hydroxyapatite crystals changed from round or elliptical shape into irregular shape as time elapsed.

Experimental Assessment of Forest Soil Sensitivity to Acidification -Application of Prediction Models for Acid Neutralization Responses- (산림토양(山林土壤)의 산성화(酸性化) 민감도(敏感度)에 대(對)한 실험적(實驗的) 평가(評價)(I) -산중화(酸中和) 반응(反應) 예측모형(豫測模型)의 활용(活用)-)

  • Lee, Seung Woo;Park, Gwan Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.133-138
    • /
    • 2001
  • Increased base cation loss and Al mobilization, a consequence of soil acid neutralization responses, are common in air polluted areas showing forest decline. The prediction models of acid neutralization responses were developed by using indicators of soil acidification level(pH, and base saturation) in order to assess the forest soil sensitivity to acidification. The soil acidification level was greatest in Namsan followed by Kanghwa, Ulsan, and Hongcheon, being contrary to regional total $ANC_H$ pattern through soil columns leached with additional acid ($16.7mmol_c\;H^+/kg$), Both base exchange and Al dissolution were main acid neutralization processes in all study regions. There were low base exchange and high Al dissolution in the regions of the low total $ANC_H$. The $ANC_M$ by sulfate adsorption was greatest in Hongcheon compared with other regions even though the AN rate was very low as 6.4%. Coefficients of adjusted determination of simple and multiple regression models between soil acidification level indicators and the acid neutralization responses were more than 0.52(p<0.04) and 0.89(p<0.01), respectively. The result suggests that soil pH and base saturation are available indicators for predicting the acid neutralization responses. These prediction models could be used as an useful method to measure forest soil sensitivity to acidification.

  • PDF

Studies on the Synthesis of the Isomeric 1-naphtholsulfonic Acids and Analysis of their Mixtures (1-나프톨 술폰산 이성체의 합성 및 혼합물의 분석에 관한 연구)

  • Sohn, Joo-Hwan;Kim, Kwang-Jea;Lee, Seung-Yeell
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.21-28
    • /
    • 1989
  • 1-naphthol-2-sulfonic acid and 1-naphthol-4-sulfonic acid were synthesized under the dissolution of 1-naphthol in 2-nitrotoluene with stirring 98.08-90% sulfuric acid at $5-95^{\circ}C$ for 1-5 hours. As the reaction temperatures and the reaction time were raised, the yield of 2-sulfonate was decreased, while that of 4-sulfonate was increased. But we could not observe the tendency to the various reaction concentrations of sulfuric acids. The mixtures of two isomeric 1-naphtholulfonic acids in excess concentrated sulfuric acids was quantitatively determinded by using multicomponent spectrophotomeric analysis method on the basis of the ultraviolet absorption peak of the sulfonic acids. The standard deviation in this method was ${\pm}\;2.6$, and the above method seem to be rapid and accurate.

The Effect of Molecular Weight on the Gelation Behavior of Regenerated Silk Solutions

  • Cho, Hee-Jung;Um, In-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.23 no.1
    • /
    • pp.183-186
    • /
    • 2011
  • The various molecular weight (MW) regenerated silk fibroins were prepared with different dissolution condition and the effect of MW on the gelation behavior of regenerated aqueous silk fibroin (SF) solution was investigated. The result of gelation time measurement indicated that the gelation of SF aqueous solution was accelerated by the increase of MW and SF concentration. When formic acid was added in SF aqueous solution, the gelation time of SFL and SFC30 aqueous solution showed a significant decreaseat 0.03% formic acid addition. In case of the lowest MW sample, SFC180, SF molecules became aggregated and precipitated without gelation after 28 days storage time. These findings indicate that MW control of SF can be utilized to control the gelation time of SF aqueous solution.