DOI QR코드

DOI QR Code

Application of Galvanic Oxidation and Pyrite Dissolution for Sustainable In-Situ Mine Tailings Treatment

갈바닉 산화와 황철석 용해를 이용한 친환경 원위치 광미 무해화 기술

  • Ju, Won Jung (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Jho, Eun Hea (Department of Environmental Science, Hankuk University of Foreign Studies) ;
  • Nam, Kyoungphile (Department of Civil and Environmental Engineering, Seoul National University)
  • 주원정 (서울대학교 건설환경공학부) ;
  • 조은혜 (한국외국어대학교 환경학과) ;
  • 남경필 (서울대학교 건설환경공학부)
  • Received : 2016.10.31
  • Accepted : 2016.12.20
  • Published : 2016.12.31

Abstract

Mine tailings generated during mining activity often contain high concentrations of heavy metals, with pyrite-containing mine tailings in particular being a major cause of environmental problems in mining areas. Chemical cell technology, or fuel cell technology, can be applied to leach heavy metals in pyrite-containing mine tailings. As pyrite dissolves through spontaneous oxidation (i.e. galvanic oxidation) in the anode compartment of the cell, $Fe^{3+}$, sulfuric acid are generated. A decrease in pH due to the generation of sulfuric acid allows heavy metals to be leached from pyrite-containing mine tailings. In this study, pyrite was dissolved for 4 weeks at $23^{\circ}C$ in an acidic solution (pH 2) and in a galvanic reactor, which induces galvanic oxidation, and total Fe leached from pyrite and pH were compared in order to investigate if galvanic oxidation can facilitate pyrite oxidation. The change in the pyrite surface was analyzed using a scanning electron microscope (SEM). Comparing the total Fe leached from the pyrite, there were 2.9 times more dissolution of pyrite in the galvanic reactor than in the acidic solution, and thus pH was lower in the galvanic reactor than in the acidic solution. Through SEM analysis of the pyrite that reacted in the galvanic reactor, linear-shaped cracks were observed on the surface of the pyrite. The study results show that pyrite dissolution was facilitated through the galvanic oxidation in the galvanic reactor, and also implied that the galvanic oxidation can be one remediation option for pyrite-containing mine tailings.

선광 및 제련과 같은 광산활동 과정에 발생하는 광미는 고농도의 중금속을 함유하고 있고, 그 중 황철석을 함유한 광미는 광산주변 수계 및 토양 오염의 주요 원인이다. 이러한 황철석을 함유한 광미의 무해화를 위해 화학전지 (연료전지)의 개념을 활용할 수 있다. 화학전지에서 황철석의 자발적인 산화, 즉, 갈바닉 산화를 통해 황철석이 용해되면서 $Fe^{3+}$와 황산이 생성되어 pH가 감소하게 된다. 이는 황철석 함유 광미 내 중금속의 용출 촉진 효과를 가져올 수 있다. 본 연구에서는 $23^{\circ}C$ 조건에서 4주 간 산성용액과 갈바닉 반응기를 이용해 황철석을 처리하며 총 용존 철 농도와 용액의 pH를 확인하였다. 또한 주사전자현미경을 이용해 처리 후 황철석 표면을 관찰하였다. 갈바닉 반응기를 이용한 황철석의 용해가 산성용액을 이용한 황철석의 용해에 비해 약 2.9배 높은 총 철을 용출시킨 것을 확인하였고, pH 저감 효과도 더 큰 것을 확인하였다. 또한 표면 분석 결과 갈바닉 반응기 내에서 반응한 황철석의 표면에서 더 많은 홈을 발견되었다. 본 연구를 통해 갈바닉 산화에 의해 황철석의 용해가 촉진된 것을 확인하였으며, 갈바닉 산화가 황철석 함유 광미의 무해화 기술로 사용될 수 있는 가능성을 확인하였다.

Keywords

References

  1. Ahonen, L. and Tuovinen, O.H. 1989. Effect of temperature on the microbiological leaching of sulfide ore material in percolators containing chalcopyrite, pentlandite, sphalerite and pyrrhotite as main minerals. Biotechnology Letters 11(5): 331-336. doi:10.1007/bf01024513.
  2. Baek, K., Kim, D.-H., Park, S.-W., Ryu, B.-G., Bajargal, T. and Yang, J.-S. 2009. Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing. Journal of Hazardous Materials 161(1): 457-462. doi:http://dx.doi.org/10.1016/j.jhazmat.2008.03.127.
  3. Bian, Z.F., Miao, X.X., Lei, S.G., Chen, S.E., Wang, W.F. and Struthers, S. 2012. The challenges of reusing mining and mineral-processing wastes. Science 337(6095): 702-703. doi:10.1126/science.1224757.
  4. Bonnissel-Gissinger, P., Alnot, M., Ehrhardt, J.-J. and Behra, P. 1998. Surface oxidation of pyrite as a function of pH. Environmental Science & Technology 32(19): 2839-2845. doi:10.1021/es980213c.
  5. Bosecker, K. 1997. Bioleaching: Metal solubilization by microorganisms. FEMS Microbiology Reviews 20(3-4): 591-604. doi:10.1111/j.1574-6976.1997.tb00340.x.
  6. Desogus, P., Manca, P.P., Orru, G. and Zucca, A. 2013. Stabilization-solidification treatment of mine tailings using Portland cement, potassium dihydrogen phosphate and ferric chloride hexahydrate. Minerals Engineering 45: 47-54. doi:10.1016/j.mineng.2013.01.003.
  7. Edwards, K.J., Hu, B., Hamers, R.J., and Banfield, J.F. 2001. A new look at microbial leaching patterns on sulfide minerals. FEMS Microbiology Ecology 34(3): 197-206. doi:10.1111/j.1574-6941.2001.tb00770.x.
  8. Jeong, H., Kim, Y. and Kim, J. 2015. Heavy metal uptake of Acacia from tailing soil in abandoned Jangun mine, Korea. Journal of the Mineralogical Society of Korea 28: 173-185. (in Korean). https://doi.org/10.9727/jmsk.2015.28.2.173
  9. Ju, W. J., Jho, E. H. and Nam, K. 2015. Effect of pyrite and indigenous bacteria on electricity generation using mine tailings. Ecology and Resilient Infrastructure 2(1): 93-98. doi:10.17820/eri.2015.2.1.093 (in Korean).
  10. Kim, S.-O. and Kim, K.-W. 2001. Monitoring of ele ctro kinetic removal of heavy metals in tailing-soils using sequential extraction analysis. Journal of Hazardous Materials 85(3): 195-211. doi:http://dx.doi.org/10.1016/S0304-3894(01)00211-4.
  11. Kim, S.-O., Moon, S.-H. and Kim, K.-W. 2001. Removal of heavy metals from soils using enhanced electrokinetic soil processing. Water, Air, & Soil Pollution 125(1): 259-272. doi:10.1023/a:1005283001877.
  12. Logan, B.E. 2008. Microbial Fuel Cells. John Wiley & Sons, Inc., Hoboken, New Jersey, USA.
  13. Lowson, R.T. 1982. Aqueous oxidation of pyrite by molecular-oxygen. Chemical Reviews 82(5): 461-497. doi:10.1021/cr00051a001.
  14. Mustin, C., Berthelin, J., Marion, P. and De Donato, P. 1992a. Corrosion and electrochemical oxidation of a pyrite by Thiobacillus ferrooxidans. Applied and Environmental Microbiology 58(4): 1175-1182.
  15. Mustin, C., De Donato, P. and Berthelin, J. 1992b. Quantification of the intragranular porosity formed in bioleaching of pyrite by Thiobacillus ferroxidans. Biotechnology and Bioengineering 39(11): 1121-1127. doi:10.1002/bit.260391107.
  16. Nguyen, V.K., Lee, M.H., Park, H.J. and Lee, J.U. 2015. Bioleaching of arsenic and heavy metals from mine tailings by pure and mixed cultures of Acidithiobacillus spp. Journal of Industrial and Engineering Chemistry 21: 451-458. doi:10.1016/j.jiec.2014.03.004.
  17. Park, C.J., Kim, W.I., Jeong, G.B., Lee, J.S., Ryu, J.S. and Yang, J.E. 2006. Characteristics of heavy metal releases from the abandoned Dogog mine tailing in Korea. Korean Journal of Environmental Agriculture 25(4): 316-322. (in Korean). https://doi.org/10.5338/KJEA.2006.25.4.316
  18. Park, J., Han, Y., Lee, E., Choi, U., Yoo, K., Song, Y. and Kim, H. 2014. Bioleaching of highly concentrated arsenic mine tailings by Acidithiobacillus ferrooxidans. Separation and Purification Technology 133: 291-296. doi:10.1016/j.seppur.2014.06.054.
  19. Rimstidt, J.D., Chermak, J.A. and Gagen, P.M. 1994. Rates of reaction of galena, sphalerite, chalcopyrite, and arsenopyrite with Fe (III) in acidic solutions. Environmental Geochemistry of Sulfide Oxidation 550: 2-13.
  20. Rimstidt, J.D. and Vaughan, D.J. 2003. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochimica et Cosmochimica Acta 67(5): 873-880. doi:http://dx.doi.org/10.1016/S0016-7037(02)01165-1.
  21. Viollier, E., Inglett, P.W., Hunter, K.S., Roychoudhury, A.N. and Van Cappellen, P. 2000. The ferrozine method revisited: Fe (II)/Fe (III) determination in natural waters. Applied Geochemistry 15(6): 785-790. doi:10.1016/s0883-2927(99)00097-9.
  22. Williamson, M.A. and Rimstidt, J.D. 1994. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochimica et Cosmochimica Acta 58(24): 5443-5454. doi:http://dx.doi.org/10.1016/0016-7037(94)90241-0.