• 제목/요약/키워드: acid and pepsin soluble collagen

검색결과 7건 처리시간 0.021초

상어 껍질과 육으로부터 산 및 Pepsin 가용성 콜라겐의 추출과 탈색조건 (Extraction and Bleaching of Acid- and Pepsin-Soluble Collagens from Shark Skin and Muscle)

  • 김재원;김도균;김미정;김순동
    • 한국식품저장유통학회지
    • /
    • 제17권1호
    • /
    • pp.91-99
    • /
    • 2010
  • 상어의 껍질과 육 조직으로부터 산 (citric acid) 가용성 콜라겐 (ASC)과 pepsin 가용성 콜라겐 (PSC)의 추출 및 탈색조건을 조사하였다. 비 콜라겐 단백질을 제거하기 위한 적정 NaOH 농도는 0.3 N이었으며 처리시간은 9시간이었다. 상어껍질의 탈색은 생 원료에 대하여 10배량의 0.48% sodium hypochlorite로 60분간 처리하는 것이 적절하였다. ASC 및 PSC의 추출시 산의 적정농도는 각각 0.3 M 및 0.1 M이었고, 추출시간은 각각 72시간 및 24시간 이었다. 산가용성 콜라겐인 ASSC (citric acid soluble shark skin collagen)와 ASMC (citric acid soluble shark muscle collagen), pepsin 가용성 콜라겐인 PSSC(pepsin and citric soluble shark skin collagen)와 PSMC (pepsin soluble shark muscle collagen)에 함유된 총 단백질 함량은 각각 88.66, 83.09, 90.33 및 84.81% (dry basis)이었으며 시판 표준 콜라겐의 88.86%와 대등하였다. Hydroxyproline의 함량으로부터 산출한 순 콜라겐 함량은 ASC에서는 25.70~70.31%, PSC에서는 32.94~83.09%이었다. 상어육과 껍질 (dry basis) 100 g으로부터 얻을 수 있는 콜라겐의 수율은 ASC는 53.85~57.22%, PSC는 20.81~23.28%이었다.

Extraction and characterization of pepsin-soluble collagen from different mantis shrimp species

  • Hiransuchalert, Rachanimuk;Oonwiset, Nakaweerada;Imarom, Yolrawee;Chindudsadeegul, Parinya;Laongmanee, Penchan;Arnupapboon, Sukchai
    • Fisheries and Aquatic Sciences
    • /
    • 제24권12호
    • /
    • pp.406-414
    • /
    • 2021
  • The objective of this study was to investigate the yield and characteristics of collagen protein extracted from the muscle of four different species of mantis shrimp: Miyakella nepa, Harpiosquilla harpax, Erugosquilla woodmasoni, and Odontodactylus cultrifer. Mantis shrimp muscle was extracted by using a pepsin-solubilization technique, with 0.5 M acetic acid and 5% pepsin enzyme. The highest collagen yield was from M. nepa muscle (0.478 ± 0.06%), which was significantly greater (p < 0.05) than that from H. harpax, O. cultrifer, and E. woodmasoni (0.313 ± 0.03%, 0.123 ± 0.02%, and 0.015 ± 0.00%, respectively). The freeze-dried collagen appeared as thin fibers, and formed an opaque film. The pepsin-soluble collagen (PSC) from four mantis shrimp species was analyzed by gel electrophoresis. The results showed that all species of mantis shrimp contained type I collagen, consisting of β, α1, and α2 subunits with average molecular weights of 250, 145, and 118 kDa, respectively. The study of the solubility of collagen showed that, for NaCl, collagen had the highest relative solubility in 2% NaCl (80.20 ± 4.95%). In contrast, the solubility decreased at higher NaCl concentrations. However, in terms of pH, collagen had the highest relative solubility at pH 3 (91.32 ± 5.14%), and its solubility decreased at higher pH. FT-IR spectroscopy was used to compare the collagen with a model compound. Five wavenumbers in the spectrum for model collagen were identified: Amide A (3,406-3,421 cm-1), amide B (2,916-2,940 cm-1), amide I (1,639-1,640 cm-1), amide II (1,539-1,570 cm-1), and amide III (1,234-1,250 cm-1).

청상아리(Isurus oxyrinchus) 껍질 콜라겐의 물리 화학적 특성 (Characterization of Physicochemical Properties of Collagen from Shark (Isurus oxyrinchus) Skin)

  • 박순형;김태완;김선봉
    • 한국수산과학회지
    • /
    • 제42권6호
    • /
    • pp.574-579
    • /
    • 2009
  • Acid- and pepsin-solubilized collagens were extracted from the skin of shark (Isurus oxyrinchus) and their physicochemical properties were characterized by amino acid analysis, SDS-PAGE, the composition of collagen types, solubility and denaturation temperature. Acid - and pepsin-solubilized collagens from shark skin had an imino acid of 188.8 and 186.2 residues/1,000 amino acids, respectively. SDS-PAGE showed two different${\alpha}$ chains ($\alpha1$ and $\alpha2$) and $\beta$-component. The component ratio of type I and V was 10:1, and the type III was not found. Solubility of acid-soluble collagen was low in the range of pH 6.0 to pH 11.0. On the other hand, pepsin-solubilized collagen showed a low solubility in the range of pH 7.0-9.0. Temperature for denaturation of acid- and pepsin-solubilized collagens were $25^{\circ}C$ and $27^{\circ}C$, respectively.

상어 콜라겐의 항산화능, 항균성, Elastase 및 Tyrosinase 저해활성 (Antioxidant and Antimicrobial Activities of Shark Collagens, and Inhibitory Actions on Elastase and Tyrosinase)

  • 김재원;김도균;박진수;이예경;백경연;김순동
    • 한국식품저장유통학회지
    • /
    • 제16권3호
    • /
    • pp.419-426
    • /
    • 2009
  • 상어 collagens(SC)(ASSC: 산가용성 껍질 collagen, ASMC: 산가용성 육 collagen, PSSC: pepsin 가용성 껍질 collagen, PSMC: pepsin 가용성 육 collagen)의 항산화성, 항균성, tyrosinase 및 elstase 저해활성을 표품(시판 marine collagen)과 비교하였다. SC($1{\sim}5\;mg/mL$)의 전자공여능은 $14.91{\sim}17.21%$로 표품의 $4.82{\sim}5.48%$에 비하여 $3.0{\sim}3.6$배가 높았다. SC($5{\sim}80\;mg/mL$)의 SOD활성은 4.67${\sim}37.28%$로 STMC 보다 $1.9{\sim}5.9$배가 높았다. SC의 S. aureus와 S. enteritidis에 대한 최소저해농도(MIC)는 $5{\mu}g$/disc로 표품의 $200{\mu}g$/disc보다 현저하게 낮았다. E. coli에 대한 MIC는 ASSC 및 ASMC에서는 $200{\mu}g$/disc인 반면 PSSC 및 PSMC는 $100{\mu}g$/disc이었으며 표품에서는 항균활성이 없었다. S. aureus에 대한 항균력은 PSMC가, S. enteritidis에 대한 항균력은 ASMC가, E. coli에 대한 항균력은 PSMC가 가장 높았다. SC($3{\sim}5\;mg/mL$)의 tyrosinase 저해활성은 $58.95{\sim}98.16%$로 표품의 $17.67{\sim}26.25%$보다 $3.34{\sim}3.74$배가 높았다. SC의 elastase 저해활성은 농도가 0.5 mg/mL에서 1 mg/mL으로 높아짐에 따라 비례적으로 증가하였고 1 mg/mL에서의 활성도는 $53.33{\sim}80.00%$로 STMC의 50.67% 보다 높았으며 PSSC에서 가장 높은 저해활성을 나타내었다. 산 및 pepsin 가용성의 모든 상어 collagen은 STMC에 비하여 $1.1{\sim}4.0$배의 높은 활성을 나타내었다. 이상의 결과 상어 collagens은 시판 marine collagen보다 항산화성, 항균성, tyrosinase 및 elastase 저해활성이 우수하여 새로운 기능성 소재로서의 활용성이 기대된다.

Isolation and Characterization of Collagen from Skin of Bullfrog, Rana catesbeiana Shaw

  • Qian, Zhong-Ji;Jung, Won-Kyo;Ngo, Nghiep Dai;Lee, Sang-Hoon;Kim, Se-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제10권2호
    • /
    • pp.53-59
    • /
    • 2007
  • In order to utilize skin of bullfrog (Rana catesbeiana Shaw) as an alternative source of collagen, we investigated and compared biochemical and physical properties of collagens isolated from bullfrog skin. Two kinds of collagen (BSASC; bullfrog skin acid-soluble collagen and BSPSC; bullfrog skin pepsin-solubilized collagen) were isolated by subsequent treatments with acetic acid and pepsin. The amounts of skin collagen isolated in the subsequent treatments were 7.3% BSASC and 18.2% BSPSC on the basis of lyophilized bullfrog skin weight, respectively. According to the electrophoretic pattern and CM-cellulose column chromatogram, the BSASC has the chain composition of ${\alpha}1{\alpha}2{\alpha}3$ heterotrimer, and the BSPSC consists of two ${\alpha}$ chains of ${\alpha}1{\alpha}2$. In addition, the denaturation temperatures of all collagens tested were ranged from $30^{\circ}C\;to\;38^{\circ}C$. This study suggests that there is a possibility to use bullfrog skin collagen as an alternative source of collagen for industrial purposes, and subsequently it may increase the economical value of the bullfrog.

Characterization of Acid- and Pepsin-soluble Collagens from Rockfish Sebastes schlegeli Skin

  • Kim, Hyung-Jun;Jee, Seong-Joon;Yoon, Min-Suck;Youn, Mu-Ho;Kang, Kyung-Tae;Lee, Dong-Ho;Heu, Min-Soo;Kim, Jin-Soo
    • Fisheries and Aquatic Sciences
    • /
    • 제12권1호
    • /
    • pp.6-15
    • /
    • 2009
  • Biochemical and functional properties of acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from rockfish skin were characterized. Yield of PSC (90.0%) was higher than that of ASC (63.2%). Both ASC and the PSC consisted of ${\alpha}1$ and ${\alpha}2$ chains, and $\alpha$-cross-linked components. According to the results of hydroxylation of proline and lysine, and FT-IR, no difference between the helical structure of ASC and PSC was identified. Thermal denaturation temperature (TDT) of ASC from rockfish skin was $22.8^{\circ}C$, the same as exhibited in PSC. Both ASC and PSC were higher in water absorption capacity (WAC) and oil absorption capacity (OAC) than other vegetable proteins. According to the results of emulsifying activity (EA) and cooking stability (CS), both ASC and PSC from rockfish skin were inferior compared to the commercial emulsifier (Tween-80). The results of FT-IR suggested that the structure of PSC was slightly different when compared to that of ASC. No differences in solubility were established between ASC and PSC from rockfish skin at various pH and NaCl concentrations.

Isolation and Characterization of Pepsin-soluble Collagens from Bones, Skins, and Tendons in Duck Feet

  • Kim, Hyun-Wook;Yeo, In-Jun;Hwang, Ko-Eun;Song, Dong-Heon;Kim, Yong-Jae;Ham, Youn-Kyung;Jeong, Tae-Jun;Choi, Yun-Sang;Kim, Cheon-Jei
    • 한국축산식품학회지
    • /
    • 제36권5호
    • /
    • pp.665-670
    • /
    • 2016
  • The objectives of this study were conducted to characterize pepsin-soluble collagen (PSC) extracted from bones (PSC-B), skins (PSC-S), and tendons (PSC-T) of duck feet and to determine their thermal and structural properties, for better practical application of each part of duck feet as a novel source for collagen. PSC was extracted from each part of duck feet by using 0.5 M acetic acid containing 5% (w/w) pepsin. Electrophoretic patterns showed that the ratio between α1 and α2 chains, which are subunit polypeptides forming collagen triple helix, was approximately 1:1 in all PSCs of duck feet. PSC-B had slightly higher molecular weights for α1 and α2 chains than PSC-S and PSC-T. From the results of differential scanning calorimetry (DSC), higher onset (beginning point of melting) and peak temperatures (maximum point of curve) were found at PSC-B compared to PSC-S and PSC-T (p<0.05). Fourier transform infrared spectroscopy (FT-IR) presented that PSC-S and PSC-T had similar intermolecular structures and chemical bonds, whereas PSC-B exhibited slight difference in amide A region. Irregular dense sheet-like films linked by random-coiled filaments were observed similarly. Our findings indicate that PSCs of duck feet might be characterized similarly as a mixture of collagen type I and II and suggest that duck feet could be used for collagen extraction without deboning and/or separation processes.