Antioxidant and Antimicrobial Activities of Shark Collagens, and Inhibitory Actions on Elastase and Tyrosinase

상어 콜라겐의 항산화능, 항균성, Elastase 및 Tyrosinase 저해활성

  • Kim, Jae-Won (Faculty of Food Science and Industrial Technology, Catholic University of Daegu) ;
  • Kim, Do-Kyun (Faculty of Food Science and Industrial Technology, Catholic University of Daegu) ;
  • Park, Jin-Soo (Department of Food Science and Nutrition, Dong-A University) ;
  • Lee, Ye-Kyung (Faculty of Food Science and Industrial Technology, Catholic University of Daegu) ;
  • Beik, Kyung-Yean (Faculty of Food Science and Industrial Technology, Catholic University of Daegu) ;
  • Kim, Soon-Dong (Faculty of Food Science and Industrial Technology, Catholic University of Daegu)
  • 김재원 (대구가톨릭대학교 외식식품산업학부 식품가공학) ;
  • 김도균 (대구가톨릭대학교 외식식품산업학부 식품가공학) ;
  • 박진수 (동아대학교 식품영양학과) ;
  • 이예경 (대구가톨릭대학교 외식식품산업학부 식품가공학) ;
  • 백경연 (대구가톨릭대학교 외식식품산업학부 식품가공학) ;
  • 김순동 (대구가톨릭대학교 외식식품산업학부 식품가공학)
  • Published : 2009.06.30

Abstract

The antioxidant and antimicrobial effects of acid-soluble and pepsin-solubilizable shark (Isurus oxyrinchus) collagens (SC) (ASSC: acid-soluble shark skin collagen, ASMC: acid-soluble shark meat collagen, PSSC: pepsin-solubilizable shark skin collagen, PSMC: pepsin-solubilizable shark meat collagen) and standard marine collagen (STMC) as materials, and the ability of these materials to inhibit tyrosinase and elastase, were investigated. The electron-donating ability of SC ($1{\sim}5\;g/mL$) was $14.91{\sim}17.21%$, which was $3.0{\sim}3.6$-fold higher than that of STMC at the same concentration. Also, the SOD(superoxide dismutase)-like activity of SC (5.80 mg/mL) was $4.67{\sim}37.28%$, thus $3.0{\sim}3.6$-fold greater than that of STMC. The MIC values of SC against Staphylococcus aureus and Salmonella enteritidis were $5{\mu}g$/disc, which were remarkably lower than that of STMC ($200{\mu}g$/disc). There was no antimicrobial activity against Escherichia coli in STMC, but the MIC against E. coli was $200{\mu}g$/disc for acid-soluble SC and $100{\mu}g$/disc for pepsin-solubilizable SC. The inhibition of tyrosinase by SC (3-5 mg/mL) was $58.95{\sim}98.16%$, $3.34{\sim}3.74$-fold higher than that of STMC ($17.67{\sim}26.25%$). Also, elastase inhibition by SC (at 1 mg/mL) was $53.33{\sim}80.0%$, $1.1{\sim}4.0$-fold greater than that of STMC. These results indicated that shark collagens may be valuable new functional materials owing to their antioxidant and antimicrobial properties, and because the inhibitory activities against elastase and tyrosinase are better than those of standard marine collagen.

상어 collagens(SC)(ASSC: 산가용성 껍질 collagen, ASMC: 산가용성 육 collagen, PSSC: pepsin 가용성 껍질 collagen, PSMC: pepsin 가용성 육 collagen)의 항산화성, 항균성, tyrosinase 및 elstase 저해활성을 표품(시판 marine collagen)과 비교하였다. SC($1{\sim}5\;mg/mL$)의 전자공여능은 $14.91{\sim}17.21%$로 표품의 $4.82{\sim}5.48%$에 비하여 $3.0{\sim}3.6$배가 높았다. SC($5{\sim}80\;mg/mL$)의 SOD활성은 4.67${\sim}37.28%$로 STMC 보다 $1.9{\sim}5.9$배가 높았다. SC의 S. aureus와 S. enteritidis에 대한 최소저해농도(MIC)는 $5{\mu}g$/disc로 표품의 $200{\mu}g$/disc보다 현저하게 낮았다. E. coli에 대한 MIC는 ASSC 및 ASMC에서는 $200{\mu}g$/disc인 반면 PSSC 및 PSMC는 $100{\mu}g$/disc이었으며 표품에서는 항균활성이 없었다. S. aureus에 대한 항균력은 PSMC가, S. enteritidis에 대한 항균력은 ASMC가, E. coli에 대한 항균력은 PSMC가 가장 높았다. SC($3{\sim}5\;mg/mL$)의 tyrosinase 저해활성은 $58.95{\sim}98.16%$로 표품의 $17.67{\sim}26.25%$보다 $3.34{\sim}3.74$배가 높았다. SC의 elastase 저해활성은 농도가 0.5 mg/mL에서 1 mg/mL으로 높아짐에 따라 비례적으로 증가하였고 1 mg/mL에서의 활성도는 $53.33{\sim}80.00%$로 STMC의 50.67% 보다 높았으며 PSSC에서 가장 높은 저해활성을 나타내었다. 산 및 pepsin 가용성의 모든 상어 collagen은 STMC에 비하여 $1.1{\sim}4.0$배의 높은 활성을 나타내었다. 이상의 결과 상어 collagens은 시판 marine collagen보다 항산화성, 항균성, tyrosinase 및 elastase 저해활성이 우수하여 새로운 기능성 소재로서의 활용성이 기대된다.

Keywords

References

  1. Oilarinen, A., Autio, P., Kiistala, U., Ristell, L. and Risteli, J. (1992) A new method to measure type I and III collagen synthesis in human skin in vivo: Demonstration of decreased collagen sunthesis after topical glucocorticoid treatment. J. Invest. Dermatol., 98, 220-225 https://doi.org/10.1111/1523-1747.ep12555884
  2. Bornstein, P., Mark, K., Wyke, H.P., Ehrlich, H.P. and Manson, J. (1972) Characterization of the pro-α1 chain of procollagen. J. Biol. Chem., 247, 2808
  3. Kim, S.K. and Kwak, D.C. (1991) The enzymatic modification and functionalities of filefish skin collagen. J. Kor. Agic. Chem. Soc., 34, 265-272
  4. Senaratne, L.S., Park, P. and Kim, S. (2006) Isolation and characterization of collagen from brown backed toadfish (Lagocephalus gloveri) skin. Bioresource Technol., 97, 191-197 https://doi.org/10.1016/j.biortech.2005.02.024
  5. Jerome, S.P., Gabrielle, L. and Raul, F. (1998) Identification of collagen fibris in scleroderma skin. J. Invest. Dermatol., 90, 48-54 https://doi.org/10.1111/1523-1747.ep12462561
  6. Ashley, W., Masahiro, O., Ralph, J.P., Mark, S., Mark, S. and Jack, N.L. (2008) Biochemical properties of alligator(Aligator mississippiensis) bone collagen. Comp. Biochem. Physiol.(Part B), 151, 246-249 https://doi.org/10.1016/j.cbpb.2008.05.015
  7. Kwon, M.C., Qadir, S.A., Kim, H.S. and Ahn, J.H. (2008) UV protection and whitening effects of collagen isolated from outer layer of the squid Todarodes pacificus. J. Kor. Fish. Soc., 41, 7-12
  8. Kwon, M.C., Kim, C.H., Kim, H.S., Syed, A.Q., Hwang, B.Y. and Lee, H.Y. (2007) Anti-wrinkle activity of low molecular weight peptides derived from collagen isolated from Asterias amurensis. Korean J. Food Sci. Technol., 39, 625-629
  9. Hu, Y., Zhao, W., Qian, X. and Zhang, L. (2003) Effects of oral administration of type II collagen on adjuvant arthritis in rats and its mechanisms. Chin. Med. J., 116, 284-287
  10. Tonnesen, M.G., Feng, X. and Clark, R.A. (2000) Angiogenesis in wound healing. J. Invest. Dermatol. Symp. Proc., 5, 40-46 https://doi.org/10.1046/j.1087-0024.2000.00014.x
  11. Rehn, M., Veikkola, T., Kukk-valdre, E., Makamura, H., IImonen, M., Lombardo, C., Pihlajaniemi, T., Alitalo, K. and Vuori, K. (2001) Interaction of endostatin with intefrins implicated in angiogeneses. Proc. Natl. Acad. Sci., USA, 98, 1024-1029 https://doi.org/10.1073/pnas.031564998
  12. Chung, J.H., Youn, S.H., Kwon, O.S., Cho, K.H., Cho, K.H., Youn, J.I. and Eun, H.C. (1997) Regulation of collagen synthesis by ascorbic acid, transforming growth factor-$\beta$and interferon-$\gamma$ in human dermal fibroblasts cultured in three-dimensional collagen gel are photoaging and aging-indepedent. J. Dermaol. Sci., 15, 188-200 https://doi.org/10.1016/S0923-1811(97)00607-5
  13. Feinstein, G.R. and Buck, E.M. (1984) Relationship of texture to pH and collagen content of yellowtail flounder and cusk. J. Food Sci., 49, 298-299 https://doi.org/10.1111/j.1365-2621.1984.tb13735.x
  14. Sato, K., Yoshinaka, R., Sato, M. and Shimizu, Y. (1986) Collagen content in the muscle of fishes in association with their swimming movement and meat texture. Nippon Suisan Gakkai., 52, 1595-1600 https://doi.org/10.2331/suisan.52.1595
  15. Murphy, M.G., Wright, V., Ackman, R.G. and Horackova, M. (1997) Diets enriched in menhaden fish oil, seal oil, or shark liver oil have distinct effects on the lipid and fatty acid composition of guinea pig heart. Mol. Cell. Biochem., 177, 257-269 https://doi.org/10.1023/A:1006871524271
  16. Blois, M.S. (1958) Antioxidant determinations by the use of stable free radical. Nature, 181, 1199-1120 https://doi.org/10.1038/1811199a0
  17. Saeedeh, A.D. and Asna, U. (2007) Antioxidant properties of various solvent extracts of mulberry(Morus indica L.) leaves. Food Chem., 102, 1233-1240 https://doi.org/10.1016/j.foodchem.2006.07.013
  18. Marklund, S. and Marklund, G. (1974) Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biol. Chem., 47, 468-474
  19. Conner, D.E. and Beuchat, L.R. (1984) Sensitivity of heat-stressed yeasts to essential oils of plants. Appl. Environ. Microbiol., 47, 229-233
  20. James, A.E.K., Timothy, D.W. and Gorden, L. (1996) Inhibition of human leukocyte and porcine pancreatic elastase by homologues of bovine pancreatic tyrosinase inhibitors. Biochem., 35, 9090-9096 https://doi.org/10.1021/bi953013b
  21. Jung, S.W., Lee, N.K., Kim, S.J. and Han, D.S. (1995) Screening of tyrosinase inhibitor from plants. Korean J. Food Sci. Technol., 27, 891-896
  22. Heo, J.C., Park, J.Y., An, S.M., Lee, J.M., Yun, C.Y., Shin, H.M., Kwon, T.K. and Lee, S.H. (2006) Antioxidant and antitumor activities of crude extracts by Gastrodia elata Blume. Korean J. Food Preserv., 13, 83-87
  23. Torel, J., Gillard, J. and Gillard, P. (1986) Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochem., 25, 383-385 https://doi.org/10.1016/S0031-9422(00)85485-0
  24. Park, H.Y., Yun, H.D., Kim, J.H., Kim, Y.G., Park, J.I., Lee, G.J., Jo, Y.R., Park, N.G., Kim, I.H., Go, H.J., An, S.H., Son, H.Y. and Kim, H.M. (2005) Development of industrial utilization technique of starfish collagen. Research Report of Ministry of Maritime Affairs and Fisheries, p. 83-88
  25. Nam, K.A. (2007) Characterization of squid skin collagens and functionality of their enzymatic hydrolysates. MS Thesis, University of Kangnung, p. 35-36
  26. Shin, S.R., Hong, J.Y., Nam, H.S., Yoon, K.Y. and Kim, K.S. (2006) Anti-oxidative effects of extracts of korean herbal materials. J. Kor. Soc. Food Sci. Nutr., 35, 187-191 https://doi.org/10.3746/jkfn.2006.35.2.187
  27. Pavel, S. and Muskiet, F.A. (1983) Eumelanin(precursor) metabolites as markers for pigmented malignant melanoma, a preliminary report. Cancer Detect. Prev., 6, 311-316
  28. Jimenez, M., Kameyama, K., Maloy, W.L., Tomita, Y. and Hearing, V.J. (1988) Mammalian tyrosinase: biosynthesis, processing, and modulation by melanocytestimulating hormone. Proc. Natl. Acad. Sci., USA, 85, 3830-3834 https://doi.org/10.1073/pnas.85.11.3830
  29. Fitzpatrick, T.B., Eisen, A.Z., Wolff, K., Freedberg, I.M. and Austen, K.F. (1983) Update: Dermatology in General Medicine. New York, McGraw-HILL, p. 205-225
  30. Maeda, K. and Fukuda, M. (1991) In vitro effectiveness of several whitening cosmetic components in human melanocytes. J. Soc. Cosmet. Chem., 42, 361-368
  31. Lee, G.C. and Lee, C.Y. (1997) Inhibitory effect of caramelization products on enzymic browning. Food Chem., 60, 231-235 https://doi.org/10.1016/S0308-8146(96)00325-1
  32. Jimenez, M., Chazarra, S., Escribano, J., Cabanes, J. and Garcia-Carmona, F. (2001) Competitive inhibition of mushroom tyrosinase by 4-substituted benzaldehydes. J. Agric. Food Chem., 49, 4060-4063 https://doi.org/10.1021/jf010194h
  33. Robit, C., Rouch, C. and Cadet, F. (1997) Inhibition of palmito(Acanthophoenix rubra) polyphenol oxidase by carboxylic acids. Food Chem., 92, 707-712 https://doi.org/10.1016/j.foodchem.2004.08.031
  34. Valero, E., Garcia-Moreno, M., Varon, R. and Garcia-Carmona, F. (1991) Timedependent inhibition of grape polyphenol oxidase by tropolone. J. Agric. Food Chem., 39, 1043- 1046 https://doi.org/10.1021/jf00006a007
  35. Cananes, J., Chazarra, S. and Garcia-Carmona, F. (1994) Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase. J. Pharm. Pharmacol., 46, 982-985 https://doi.org/10.1111/j.2042-7158.1994.tb03253.x
  36. DeWitt, DL., Rollins, TE., Day, J.S., Gauger, J.A. and Smith, W.L. (1981) Orientation of the active site, and antigenic determinants of prostaglandin endoperoxide of synthase in the Endoplasmic reticulum. J. Biol. Chem., 256, 10375-10382
  37. Tsuji, N., Moriwaki, S., Suzuki, Y., Takema, Y. and Imokawa, G. (2001) The role of elstases secreted by fibroblasts in wrinkle formation: Implication through selective inhibition of elastase activity. Photochem. Photobiol., 74, 283-290 https://doi.org/10.1562/0031-8655(2001)074<0283:TROESB>2.0.CO;2
  38. Ying, Q.L., Rinehart, A.R., Simon, S.R. and Cheronis, J.C. (1991) Inhibition of human leucocyte elastase by ursolic acid. Evidence for a binding site for pentacyclic. Biochem. J., 277, 521-526
  39. Kim, M.J., KIM, J.Y., Choi, S.W., Hong, J.T. and Yoon, K.S. (2004) Anti-wrinkle effect of safflower(Cathamus tinctorius) seed extract. J. Soc. Cosmet. Sci. Korea, 30, 15-22