• 제목/요약/키워드: acicular

검색결과 207건 처리시간 0.024초

EH40 강의 Tandem EGW 용접부 미세조직과 충격인성 특성 (Impact Toughness and Microstructure of the Weld Metal by Tandem Electro-Gas Welded EH40 Steel)

  • 박태규;김정민;윤혜영;이재현;정원지;김호경
    • 대한금속재료학회지
    • /
    • 제48권11호
    • /
    • pp.1021-1027
    • /
    • 2010
  • The charpy impact property was lower at the surface and middle regions than that at the root region in metal welded by Tandem EGW of 82 mm thick EH40-TM steel plates. Temperature distribution in the weld sample and the heating/cooling temperature throughout the various regions in the weld metal were estimated by the commercial weld simulation program SYSWELD. The microstructure of the weld metal consisted of acicular ferrite and grain boundary ferrite. Grain boundary ferrite in the acicular ferrite matrix was found more in the surface and middle regions than in the root region, and the acicular ferrite was also coarser in the surface and middle regions where the impact toughness was lower and the input temperature was higher. Our results indicated that the impact toughness property was related to the microstructure morphology, the distribution of grain boundary ferrite, and the acicular ferrite.

베이나이트강의 미세조직과 저온 충격 인성에 미치는 바나듐과 보론의 영향 (Effect of Vanadium and Boron on Microstructure and Low Temperature Impact Toughness of Bainitic Steels)

  • 황원구;이훈;조성규;서준석;권용재;이정구;신상용
    • 한국재료학회지
    • /
    • 제31권3호
    • /
    • pp.139-149
    • /
    • 2021
  • In this study, three kinds of bainitic steels are fabricated by controlling the contents of vanadium and boron. High vanadium steel has a lot of carbides and nitrides, and so, during the cooling process, acicular ferrite is well formed. Carbides and nitrides develop fine grains by inhibiting grain growth. As a result, the low temperature Charpy absorbed energy of high vanadium steel is higher than that of low vanadium steel. In boron added steel, boron segregates at the prior austenite grain boundary, so that acicular ferrite formation occurs well during the cooling process. However, the granular bainite packet size of the boron added steel is larger than that of high vanadium steel because boron cannot effectively suppress grain growth. Therefore, the low temperature Charpy absorbed energy of the boron added steel is lower than that of the low vanadium steel. HAZ (heat affected zone) microstructure formation affects not only vanadium and boron but also the prior austenite grain size. In the HAZ specimen having large prior austenite grain size, acicular ferrite is formed inside the austenite, and granular bainite, bainitic ferrite, and martensite are also formed in a complex, resulting in a mixed acicular ferrite region with a high volume fraction. On the other hand, in the HAZ specimen having small prior austenite grain size, the volume fraction of the mixed acicular ferrite region is low because granular bainite and bainitic ferrite are coarse due to the large number of prior austenite grain boundaries.

실리카 피착이 철립말의 입자형태 및 자기특성에 미치는 영향 (제1보) (Effect of Silica Coating on Particle Shape and Magnetic Properties of Iron Powder(I))

  • 오재희;김종식;류병환
    • 한국세라믹학회지
    • /
    • 제22권6호
    • /
    • pp.21-28
    • /
    • 1985
  • The properties of magnetic recording materials largely depend on their shape magnetic anisotropy. The control of their shape and size distribution is very important for improving magnetic properties. The silica-coated goethite$(SiO_2$/$\alpha$-FeOOH=1.5wt%) having acicular shape was prepared. The sillica-coated goethite was heat-treated at 40$0^{\circ}C$~1,00$0^{\circ}C$ 1hr and then reduced at 50$0^{\circ}C$ 2hr. When the silica-coated goethite was heat-treated at 80$0^{\circ}C$ its acicular shape was maintained and its magnetic properties were improved(Hc: 1,325 Oe $\sigma$m:138.8 emu/g, Rs:0.56) However the acicular shape of the paricles was broken for non-coated hematite obtained by dehydration at 80$0^{\circ}C$ They were sintered and showed poor magnetic properties.

  • PDF

초 고 탄소 저합금강의 경도와 인성에 미치는 열간단조의 영향 (Effect of Hot Forging on the Hardness and Toughness of Ultra High Carbon Low Alloy Steel)

  • 김종백;강창룡
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.115-121
    • /
    • 2013
  • This study was carried out to investigate the effect of hot forging on the hardness and impact value of ultra high carbon low alloy steel. With increasing hot forging ratio, thickness of the network and acicular proeutectoid cementite decreased, and than were broken up into particle shapes, when the forging ratio was 80%, the network and acicular shape of the as-cast state disappeared. Interlamellar spacing and the thickness of eutectoid cementite decreased with increasing forging ratio, and were broken up into particle shapes, which then became spheroidized. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up 50%, and then hardness rapidly decreased, while impact value rapidly increased. Hardness and impact value was greatly affected by the disappeared of network and acicular shape of proeutectoid cementite, and became particle shape than thickness reduction of proeutectoid and eutectoid cementite.

Ti-10V-2Fe-3Al 합금의 열간성형성에 미치는 초기미세조직의 영향 (Effect of Initial Microstructures on Hot Formability of Ti-10V-2Fe-3Al Alloy)

  • 신동혁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.153.2-158
    • /
    • 1999
  • A study has been made to investigate how the fomability of Ti-10V-2Fe-3Al alloy is related to the initial microstructure and process variables such as temperature and strain rate. It has been found that the deformation resistance at high temperature is increased with the increase in the thickness of grain boundary a (GB)a and/or acicular a phase and however the effect of a morphology on the hot formability is considered insignificant due to the breakage of GB a and/or acicular a into several equiaxed a particles

  • PDF

저탄소.저합금강의 Ti-Nb-V 복합 탄질화물 형성 및 기계적 특성에 미치는 V 첨가의 효과 (Effects of V on the Formation of Ti-Nb-V Cabonitrides and Mechanical Properties in Low Carbon HSLA Steels)

  • 강주석;김득중;박찬경
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.581-585
    • /
    • 2006
  • Effects of V on both the formation of Ti-Nb-V carbonitrides and mechanical properties of Ti-Nb bearing low carbon HSLA steels were investigated. Hot rolling process was simulated by using Gleeble 3500 system with the steels containing three different levels of V ($0{\sim}0.1wt.%$). Vanadium precipitated as Ti-Nb-V carbonitrides at austenite region but it did not precipitate as VC during austenite to acicular ferrite or bainitic ferrite phase transformation. As V content increased, the amount of Nb precipitates was decreased but the average size of Ti-Nb-V carbonitrides was increased due to larger diffusivity of V than that of Nb. Coarsened Ti-Nb-V carbonitrides could act as heterogeneous nucleation site during ${\gamma}{\rightarrow}{\alpha}$ phase transformation, thus, acicular ferrite transformation was promoted as V content increased, resulting in increase of upper shelf energy.

800 MPa급 고강도강 용접금속의 미세조직 특성 비교 연구 (Microstructural Characteristics of 800 MPa Grade High Strength Steel Weld Metals)

  • 이재희;김상훈;윤병현;김환태;길상철;이창희
    • Journal of Welding and Joining
    • /
    • 제29권1호
    • /
    • pp.65-73
    • /
    • 2011
  • Microstructural characteristics of two high strength (600 MPa & 800 MPa) weld metals produced by flux-cored arc welding process (FCAW) were evaluated. The 600 MPa grade weld metal was consisted of 75% acicular ferrite and 25% ferrite which was formed at relatively high temperature (grain boundary ferrite, widmanstatten ferrite, polygonal ferrite). However, the 800 MPa grade weld metal was composed of about 85% acicular ferrite and 15% low temperature forming phases (bainite, martensite). The prior austenite grain size of 800 MPa grade weld metal was decreased by solute drag force. The compositions and sizes of inclusions which are the dominant factors for the formation of acicular ferrite were analyzed by a transmission electron microscopy (TEM). In both 600 MPa and 800MPa grade weld metals, the inclusions were mainly consisted of Ti-oxide and Mn-oxide, and the average size of inclusions was $0.7{\mu}m$. The 800 MPa grade weld metal exhibited higher tensile strength and similar toughness compared with the 600 MPa grade weld metal. This result is mainly due to a higher fraction of low temperature products and a lower fraction of grain boundary ferrite in the 800 MPa grade weld metal.

투각섬석-양기석 계열 각섬석의 형태적 다양성과 자연 석면 평가에서의 의미 (Morphological Diversity of Tremolite-actinolite Series Amphiboles with Implications to the Evaluation of Naturally Occurring Asbestos)

  • 정기영;최진범
    • 한국광물학회지
    • /
    • 제25권2호
    • /
    • pp.95-104
    • /
    • 2012
  • 자연 석면 산출지의 투각섬석-양기석에 대한 전자현미경관찰 결과, 섬유상, 침상, 주상의 다양한 입자 형태가 관찰되었다. 섬유상 입자들은 일정한 너비로 가늘고 길게 휘어지며, 로프 모양의 다발이나 매트를 형성한다. 침상 입자들은 평행한 다발을 형성하나 장축 방향으로 쉽게 갈라지며 탄성이 있다. 주상 입자는 분쇄과정에서 벽개를 따라 쪼개지며 종횡비가 짧은 침상입자를 형성한다. 입자의 형태적 특성은 산출지별로 다르며 하나의 시편 내에서도 차이가 관찰된다. 투각섬석-양기석 계열의 각섬석은 섬유상에서 주상까지 형태적 연속체를 형성하므로 석면상 각섬석에 대한 유해성 평가를 위해서는 형태적 특성과 발암 특성 간의 인과관계에 근거한 동정 기준 및 시료준비과정이 수립되어야 한다.

합금강(ASTM A387 Gr. 91) - 탄소강(ASTM A516 Gr.70) 이종금속의 FCA 다층 용접부 특성 평가 : Part. 2 (A Study of Characteristics on the Dissimilar Metals (Alloy steel : A387 Gr. 91 - Carbon Steel : A516 Gr. 70) Welds Made with FCA Multiple Layer Welding: Part 2)

  • 신태우;현준혁;고진현
    • Journal of Welding and Joining
    • /
    • 제35권3호
    • /
    • pp.68-74
    • /
    • 2017
  • Characteristics of dissimilar metal welds between alloy steel ASTM A387 Gr. 91 and carbon steel ASTM A516 Gr.70 made with Flux cored arc welding(FCAW) have been evaluated in terms of microstructure, mechanical strength, chemical analysis by EDS as well as corrosion test. Three heat inputs of 15.0, 22.5, 30.0kJ/cm were employed to make joints of dissimilar metals with E71T-1C wire. Post-weld heat treatment was carried out at $750^{\circ}C$ for 2.5 h. Based on microstructural examination, Intragranular polygonal ferrite and grainboundary ferrite were formed only in first layer of weld metal. Another layers consisted of acicular ferrite and $Widmannst{\ddot{a}}tten$ ferrite. The amount of acicular ferrite was increased with decreasing heat input and layer. Heat affected zone of alloy steel showed the highest hardness due to the formation of tempered martensite and lower bainite. Lower and upper bainite were formed in heat affected zone of carbon steel. Tensile strengths of dissimilar metal welds decreased with increasing heat inputs. Dissimilar metal welds showed a good hot cracking resistance due to the low HCS index below 4. The salt spray test of dissimilar metals welds showed that the weight loss rate by corrosion below 170 hours was decreased with increasing heat inputs due to the increase of the amount of acicular ferrite.

API X80 라인파이프강의 용접열영향부 충격인성에 미치는 복합산화물의 영향 (Effects of Complex Oxides on HAZ Toughness of Three API X80 Linepipe Steels)

  • 신상용;오경식;강기봉;이성학
    • 대한금속재료학회지
    • /
    • 제46권4호
    • /
    • pp.199-208
    • /
    • 2008
  • This study is concerned with effects of complex oxides on Charpy impact toughness of heat affected zone (HAZ) of API X80 linepipe steels. Three kinds of steels were fabricated by varying alloying elements such as Ti, Al, and Mg and hot-rolling conditions to form complex oxides, and their microstructures and Charpy impact properties were investigated. The number of complex oxides present in the steel containing excess Ti, Al, and Mg was twice larger than that in the conventional steels, while their size ranged from 1 to $3{\mu}m$ in the three steels. After the HAZ simulation test, the steel containing a number of oxides contained about 20 vol.% of acicular ferrite in the simulated HAZ, together with bainitic ferrite and martensite, whereas the HAZ microstructure of the conventional steels consisted of bainitic ferrite and martensite with a small amount of acicular ferrite. This formation of acicular ferrite in the oxide-containing steel was associated with the nucleation of acicular ferrite at complex oxides, thereby leading to the great (five times or more) improvement of Charpy impact toughness over the conventional steels.