DOI QR코드

DOI QR Code

Morphological Diversity of Tremolite-actinolite Series Amphiboles with Implications to the Evaluation of Naturally Occurring Asbestos

투각섬석-양기석 계열 각섬석의 형태적 다양성과 자연 석면 평가에서의 의미

  • Jeong, Gi-Young (Department of Earth and Environmental Sciences, Andong National University) ;
  • Choi, Jin-Beom (Department of Earth and Environmental Sciences and Research Institute of Natural Sciences, Gyeongsang National University)
  • 정기영 (안동대학교 지구환경과학과) ;
  • 최진범 (경상대학교 지구환경과학과 및 기초과학연구소)
  • Received : 2012.06.13
  • Accepted : 2012.06.25
  • Published : 2012.06.30

Abstract

Electron microscopy of the tremolite-actinolite series amphiboles from the naturally occurring asbestos locality showed the morphological diversity including fibrous, acicular, and prismatic. Very thin, long, and flexible fibers of constant width form ropy bundles or mats. Acicular particles are slightly thick, long, elastic, and easily separated from the bundle of parallel rods. Acicular fragments of lower aspect ratio are formed during the crushing of the amphibole prism. Morphological features of the amphiboles are different depending on their localities and vary in a specimen. Morphological continuum between amphibole fiber and prism requires the establishment of reliable identification criterions and sample preparation protocol based on the relation between carcinogenicity and morphological features.

자연 석면 산출지의 투각섬석-양기석에 대한 전자현미경관찰 결과, 섬유상, 침상, 주상의 다양한 입자 형태가 관찰되었다. 섬유상 입자들은 일정한 너비로 가늘고 길게 휘어지며, 로프 모양의 다발이나 매트를 형성한다. 침상 입자들은 평행한 다발을 형성하나 장축 방향으로 쉽게 갈라지며 탄성이 있다. 주상 입자는 분쇄과정에서 벽개를 따라 쪼개지며 종횡비가 짧은 침상입자를 형성한다. 입자의 형태적 특성은 산출지별로 다르며 하나의 시편 내에서도 차이가 관찰된다. 투각섬석-양기석 계열의 각섬석은 섬유상에서 주상까지 형태적 연속체를 형성하므로 석면상 각섬석에 대한 유해성 평가를 위해서는 형태적 특성과 발암 특성 간의 인과관계에 근거한 동정 기준 및 시료준비과정이 수립되어야 한다.

Keywords

References

  1. 고상모 (2009) 석면류 광물의 생성환경 및 산출상태. 제1회 한국석면아카데미 강의교재 중에서, 한국광물학회, 18-34.
  2. 박기남, 황진연, 오지호, 이효민 (2012) 충남 청양군 비봉광산 사문암체의 산상과 구성광물. 한국광물학회지, 25, 9-21. https://doi.org/10.9727/jmsk.2012.25.1.009
  3. 안연광 (2010) 석면관련 정부정책 및 법제동향. 제2기 한국석면아카데미 강의교재 중에서, 한국광물학회, 42-56.
  4. 윤근택, 황진연, 오지호, 이효민 (2010) 충남 보령 지역의 폐석면 광산에서 산출하는 투각섬석 석면의 특성. 한국광물학회지, 23, 73-84.
  5. 최진범, 손일, 노진환 (2011) GIS 기법을 이용한 폐석면 광산의 위해성 평가. 한국광물학회지, 24, 43-53.
  6. 한국광해관리공단 (2010) 석면광해 복원기준 설정. 71p.
  7. (사)한국광물학회, 한국광해관리공단 (2010) 석면 표준 분석법: 토양.물 중 석면 함유량 분석. 한국광물학회지, 23, 171-183.
  8. Bernstein, D.M., Chevalier, J., and Smith, P. (2005) Comparison of Calidria chrysotile asbestos to pure tremolite: Final results of the inhalation biopersistence and histopathology examination following short-term exposure. Inhal. Toxicol., 17, 427-449. https://doi.org/10.1080/08958370591002012
  9. Davis, J.M.G., Addison, J., McIntosh, C., Miller, B.G., and Niven, K. (1991) Variations in the carcinogenicity of tremolite dust samples of differing morphology. Annals New York Academy of Sciences, 643, 473-490. https://doi.org/10.1111/j.1749-6632.1991.tb24497.x
  10. Gunter, M.E., Belluso, E., and Mottana, A. (2007) Amphiboles: Environmental and health concerns. In: Hawthorne, F.C., Oberti, R. Della Ventura, G. Mottana, A. (eds.), Amphiboles: Crystal Chemistry, Occurrence and Health Issues, Reviews in Mineralogy and Geochemistry, Vol. 67, Mineral. Soc. America and the Geochem. Soc. 453-516.
  11. Hume, L.A. and Rimstidt, J.D. (1992) The biodurability of chrysotile asbestos. Am. Mineral., 77, 1125-1128.
  12. Lower, H. and Meeker, G. (2002) Tabulation of asbestos-related terminology. USGS Open-File Report 02-458.
  13. McConnel, E.E. et al. (1990) Toxicology and cacinogenesis studies of tremolite. National Toxicology Program Technical Report Series No. 277. 183p.
  14. Meeker, G.P., Bern, A.M., Brownfield, I.K., Lowers, H.A., Sutley, S.J., Hoefen, T.M., and Vance, J.S. (2003) The composition and morphology of amphiboles from the Rainy Creek Complex, near Libby Montana. Am. Mineral., 88, 1955-1969. https://doi.org/10.2138/am-2003-11-1239
  15. Strohmeier, B.R, Huntington, J.C., Bunker, K.L., Sanchez, M.S., Allison, K., and Lee, R.J. (2010) What is asbestos? and why is it important? Challenges of defining and characterizing asbestos. Int. Geol. Rev., 52, 801-872. https://doi.org/10.1080/00206811003679836
  16. Thompson, B.D., Gunter, M.E., and Wilson, M.A. (2011) Amphibole asbestos soil contamination in the U.S.A.: A matter of definition. Am. Mineral., 96, 690-693. https://doi.org/10.2138/am.2011.3777

Cited by

  1. Mineralogical Characteristic and Occurrence of Tremolite and Actinolite in the Dong-A mine, Korea vol.28, pp.4, 2015, https://doi.org/10.9727/jmsk.2015.28.4.333
  2. Size Distributions of Amphiboles in Soils from a Closed Asbestos Mine, Jecheon, Chungcheongbuk-do, Korea vol.47, pp.5, 2014, https://doi.org/10.9719/EEG.2014.47.5.497
  3. Occurrence and Mineralogical Characteristics of Asbestos in Dolostone at Ungdo, Seosan vol.47, pp.5, 2014, https://doi.org/10.9719/EEG.2014.47.5.489
  4. Asbestiform Tremolite Formed by Chert-Dolomite Reaction and Its Morphological Characteristics vol.26, pp.2, 2013, https://doi.org/10.9727/jmsk.2013.26.2.111
  5. 국내 탄산염암 지역(아산, 무주, 장수)에서 산출되는 자연발생석면의 광물학적 특성 vol.51, pp.4, 2012, https://doi.org/10.9719/eeg.2018.51.4.309