• Title/Summary/Keyword: acetic acid effect

Search Result 846, Processing Time 0.026 seconds

Effect of Acetic Acid on Bacteriocin Production by Gram-Positive Bacteria

  • Ge, Jingping;Kang, Jie;Ping, Wenxiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1341-1348
    • /
    • 2019
  • Acetic acid is indirectly involved in cell center metabolism, and acetic acid metabolism is the core of central metabolism, affecting and regulating the production of bacteriocin. Bacteriocin is a natural food preservative that has been used in the meat and dairy industries and winemaking. In this paper, the effects of acetic acid on bacteriocin produced by Gram-positive bacteria were reviewed. It was found that acetic acid in the undissociated state can diffuse freely through the hydrophobic layer of the membrane and dissociate, affecting the production, yield, and activity of bacteriocin. In particular, the effect of acetic acid on cell membranes is summarized. The link between acetic acid metabolism, quorum sensing, and bacteriocin production mechanisms is also highlighted.

Effect of Acetic Acid on Xylitol Fermentation by Candiac parapsilosis (Candida parapsilosis에 의한 Xylitol 발효시 Acetic acid가 미치는 영향)

  • Kim, Sang-Yong;Yoon, Sang-Hyun;Kim, Jung-Min;Oh, Deok-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.756-761
    • /
    • 1996
  • Influence of acetic acid on xylitol production from xylose using Candida parapsilosis KFCC 10875 was investigated at the different concentrations of acetic acid. Acetic acid was totally consumed below 1.0 g/l of its concentration, whereas partially consumed above 3.0 g/l and remained in the medium during xylitol fermentation. Cell growth, xylose consumption, and xylitol production decreased when acetic acid concentration was increased. Specific growth rate of cell and specific consumption rate of xylose also decreased with increasing the concentration of acetic acid. However, the xylitol yield from xylose and specific production rate of xylitol were maximum at 1.0 g/l of acetic acid. The inhibitory effect of acetic acid on xylitol fermentation increased when pH was decreased.

  • PDF

The Effect of Gyejakjimo-tang on c-Fos Expression in Mice Model of Acute Pain (계지작약지모탕(桂枝芍藥知母湯)이 Acetic Acid에 의한 통증에 미치는 영향)

  • Noh, Hee-Youb;Kim, Youn-Sub;Kim, Do-Hoon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.29 no.3
    • /
    • pp.150-158
    • /
    • 2016
  • Objectives : We want to know the effect of Gyejakjimo-tang in mice model of acute pain.Methods : We investigated writhing reflex in mice with acetic acid-induced abdominal pain using mice, we observed c-Fos protien expression by immunohistochemistry dyeing method in the paraventricular nucleus(PVN) and supraoptic nucleus(SON) of the hypothalamus.Results : All of Gyejakjimo-tang treated group suppressed acetic acid-induced writhing response as acetic acid injuction group, but in 100㎎/㎏ Gyejakjimo-tang treated group and 200㎎/㎏ Gyejakjimo-tang treated groups represernted significance. All of Gyejakjimo-tang treated groups(50, 100 and 200㎎/㎏ Gyejakjimo-tang-treated group), Fos-positive cells in PNV significantly decreased as acetic acid injuction group, and All of Gyejakjimo-tang-treated groups Fos-positive cells in SON significantly decreased as acetic acid injuction group.Conclusions : The present results showed that the mice pre-treated with the aqueous extract of Gyejakjimo-tang showed analgesic effect on acetic acid-induced abdominal pain.

The Hemato-Chemical Effect of Acetic Acid Treatment on Carbon Monooxide Intoxication (일산화탄소 중독시 식초산이 혈액 반응에 미치는 영향)

  • Yoon, Youn-Hwa;Chung, Yong;Kwon, Sook-Pyo
    • YAKHAK HOEJI
    • /
    • v.24 no.2
    • /
    • pp.79-86
    • /
    • 1980
  • CO-intoxication is a serious problem in public health since the coal briquette has been used as one of fuels from 1950's. It has been discussed that the treatment with acetic acid vapor may be effective for CO-intoxication. This study was undertaken to investigate the action of acetic acid therapy, comparing with the spontaneous air treatment The acetic acid vapor was introduced to the blood combined with CO (in vivo and in vitro). The dissociation of COHb, the production of COHb, the levels of Hb and adrenaline and nor-adrenaline were measured. The effect of acetic acid vapor on dissociation of COHb was about 7-9% more effective than the spontaneous air treatment. The acetic acid vapor treatment for the dissociation of COHb was similar effect to the spontaneous air treatment. In an experiment of the combining CO gas with blood, the acetic acid vapor treatment was less effective in the production of COHb than that of spontaneous air treatment. Treatment with the acetic acid vapor to rabbit intoxicated with CO gas induced a little amount of Hb in blood comparing with the spontaneous air treatment. But, it is not a significant increment statistically. By the acetic acid vapor treatment after CO gas intoxication the adrenaline was increased and noradrenaline was decreased. With these results, it is assumed that the effect of acetic acid therapy on CO-gas intoxication would be caused by inductions of Hb and adrenaline and to be reduction of nor-adrenaline.

  • PDF

Effect of Acetic Acid Pretreatment on Drought Stressed Alfalfa Plants

  • Myung-Ju Kim;Min-Jun Kim;Il-Kyu Yoon;Byung-Hyun Lee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.3
    • /
    • pp.210-214
    • /
    • 2024
  • Drought stress is one of the major factors that reduce plant growth and productivity. This study was conducted to investigate the effect of exogenous acetic acid pretreatment on drought stress tolerance response in plants. Fourteen-day-old alfalfa plants were pretreated with 15 mM acetic acid, and then subsequently subjected to drought stress for 6 days. The fresh weight and relative water content in the leaves of acetic acid pretreated alfalfa plants were increased compared to the control group. The chlorophyll and carotenoid contents were slightly decreased in the acetic acid treatment. The H2O2 and proline contents were also significantly decreased in the acetic acid treatment. These results suggest that the scavenging mechanism of reactive oxygen species in alfalfa activated by acetic acid pretreatment is involved in conferring tolerance to drought stress.

Effect of Acid Treatment Process on the Physicochemical Properties of Gelatin Extracted from Pork Skin (산처리 공정에 따라 추출한 돈피 젤라틴의 이화학적 특성에 관한 연구)

  • Yeom Geun-Woong;J Andrieu;Min Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.24 no.3
    • /
    • pp.266-272
    • /
    • 2004
  • The objective of this study was to investigate the physicochemical characteristics of gelatin extracted from pork skin under soaking in various acid solutions (lactic acid, acetic acid, and citric acid). Gelatin sol was extracted at 8$0^{\circ}C$, frozen at -2$0^{\circ}C$ and lyophilized it for 3 days to be completely dried in freeze drying unit. In the evaluation of gelatin quality, gelatin soaked in citric acid showed higher L- and a-values than those of any other gelatin (p<0.05). Gelatin treated by acetic acid showed the highest gel strength, cohesiveness, and brittleness. The content of hydroxyproline amino acid in gelatin treated by acetic acid was larger than one of gelatin treated in lactic and citric acid in order. From the experimental results, the highest quality of gelatin in all of period, which was soaked in acetic acid and lactic acid, has a more good quality than gelatin soaked in citric acid.

Synthesis of 4,5-Diphenyl Imidazolone and Studies on its Fluorescent Effect (4,5-Diphenyl-Imidazolone의 合成 及 螢光效果에 關한 硏究)

  • Jeon, Poong-Jin;Kim, Hyung-Sook
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.70-77
    • /
    • 1957
  • 4,5-Diphenyl Imidazolone is synthesized from Benzoin, Urea, and Acetic acid catalyser. Nowadays, it is being used as an optical bleaching agent for wool and nylon textiles. Up to now, only one process of synthesis has been known. In order to find out the best conditions governing the yield were examined under various catalysers and conditions. In this experiment, the summary of results were as follows. a. On Acetic acid catalyser. The maximum yield conditions were mol ratio (Benzoin: Urea: Acetic acid) 1 : 2 : 14, Acetic acid concentration 99.9%. Reaction temperature 115$^{\circ}$. Under reaction time of 2 hours, above yield was 96.4%. b. On Mineral acid Catalyser. In using of Sulfonic acid, the color of solution was changed dark purlish black. With other mineral acid catalysers, in spite of increasing of temperature, it was proved that Benzoin floats on the solution, so that this reaction could not be continue. c. On Phosphoric acid catalyser. It was made clear that it can not be used for this reaction. d. On Sodium hydroxide catalyser. As one of Alkali catalyser, Sodium hydroxide was examined but this was unsuitable substance for this reaction. e. On Formic acid catalysers. The maximum yield conditions were mol ratio (Benzoin: Urea: Formic acid) 1: 2: 30. Formic acid concentration 85.%. Reaction temperature 150∼110$^{\circ}$. Under reaction time of 90 minutes, the best yield was 87%. Hereby, it was proved that organic acids such as Acetic acid and Formic acid can be used. When using Acetic acid, the yield was better than Formic acid, but it takes longer reaction time than Formic acid. About the fluorescent effect, the temperature of dye-bath must not be over 904,5-Diphenyl Imidazolone is synthesized from Benzoin, Urea, and Acetic acid catalyser. Nowadays, it is being used as an optical bleaching agent for wool and nylon textiles. Up to now, only one process of synthesis has been known. In order to find out the best conditions governing the yield were examined under various catalysers and conditions. In this experiment, the summary of results were as follows. a. On Acetic acid catalyser. The maximum yield conditions were mol ratio (Benzoin: Urea: Acetic acid) 1 : 2 : 14, Acetic acid concentration 99.9%. Reaction temperature 115$^{\circ}$. Under reaction time of 2 hours, above yield was 96.4%. b. On Mineral acid Catalyser. In using of Sulfonic acid, the color of solution was changed dark purlish black. With other mineral acid catalysers, in spite of increasing of temperature, it was proved that Benzoin floats on the solution, so that this reaction could not be continue. c. On Phosphoric acid catalyser. It was made clear that it can not be used for this reaction. d. On Sodium hydroxide catalyser. As one of Alkali catalyser, Sodium hydroxide was examined but this was unsuitable substance for this reaction. e. On Formic acid catalysers. The maximum yield conditions were mol ratio (Benzoin: Urea: Formic acid) 1: 2: 30. Formic acid concentration 85.%. Reaction temperature 150∼110$^{\circ}$. Under reaction time of 90 minutes, the best yield was 87%. Hereby, it was proved that organic acids such as Acetic acid and Formic acid can be used. When using Acetic acid, the yield was better than Formic acid, but it takes longer reaction time than Formic acid. About the fluorescent effect, the temperature of dye-bath must not be over 90$^{\circ}$. and the ratio of 4,5-Diphenyl Imidazolone and water should be from 1:50000. to 1:10000. It proved that the best effect on textiles, and the best condition were dye-temperature near 704,5-Diphenyl Imidazolone is synthesized from Benzoin, Urea, and Acetic acid catalyser. Nowadays, it is being used as an optical bleaching agent for wool and nylon textiles. Up to now, only one process of synthesis has been known. In order to find out the best conditions governing the yield were examined under various catalysers and conditions. In this experiment, the summary of results were as follows. a. On Acetic acid catalyser. The maximum yield conditions were mol ratio (Benzoin: Urea: Acetic acid) 1 : 2 : 14, Acetic acid concentration 99.9%. Reaction temperature 115$^{\circ}C$. . Under reaction time of 2 hours, above yield was 96.4%. b. On Mineral acid Catalyser. In using of Sulfonic acid, the color of solution was changed dark purlish black. With other mineral acid catalysers, in spite of increasing of temperature, it was proved that Benzoin floats on the solution, so that this reaction could not be continue. c. On Phosphoric acid catalyser. It was made clear that it can not be used for this reaction. d. On Sodium hydroxide catalyser. As one of Alkali catalyser, Sodium hydroxide was examined but this was unsuitable substance for this reaction. e. On Formic acid catalysers. The maximum yield conditions were mol ratio (Benzoin: Urea: Formic acid) 1: 2: 30. Formic acid concentration 85%. Reaction temperature 150∼110$^{\circ}C$. Under reaction time of 90 minutes, the best yield was 87%. Hereby, it was proved that organic acids such as Acetic acid and Formic acid can be used. When using Acetic acid, the yield was better than Formic acid, but it takes longer reaction time than Formic acid. About the fluorescent effect, the temperature of dye-bath must not be over 90$^{\circ}C$. and the ratio of 4,5-Diphenyl Imidazolone and water should be from 1:50000. to 1:10000. It proved that the best effect on textiles, and the best condition were dye-temperature near 70$^{\circ}C$. and dye-time 15 minutes. . and dye-time 15 minutes. . and the ratio of 4,5-Diphenyl Imidazolone and water should be from 1:50000. to 1:10000. It proved that the best effect on textiles, and the best condition were dye-temperature near 70$^{\circ}C$. and dye-time 15 minutes.

  • PDF

Production of Auxins and Auxin-like Compounds by Ginseng Growth-promoting Bacterium Pseudomonas fluorescens KGPP 207

  • Ten, Leonid N.;Lee, Mi Ja;Lee, Mee-Kyoung;Park, Hoon;Yoon, Jong Hyuk
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.264-268
    • /
    • 2000
  • High activity of acidic ethylacetate extract from the culture supernatant of ginseng growth-promoting bacterium Pseudomonas fluorescens KGPP 207 and its fractions were demonstrated through wheat coleoptile bioassay. The following auxins and auxin-like compounds were identified in these fractions by combined gas chromatography-mass spectrometry: indole-3-acetic acid, indole-3-acetic acid methyl and ethyl ester, indole-3-butyric acid, indole-3-lactic acid and its methyl ester, indole-3-propionic acid, indole-3-pyruvic acid, p-hydroxyphenyl acetic acid, p-hydroxyphenyl acetic acid methyl and ethyl ester, phenyl acetic acid and its methyl ester. The bacterium KGPP 207 belongs to the strain of P. fluorescens which produces plant growth regulators and its beneficial effect on the ginseng growth may be due to the formation of the identified compounds.

  • PDF

Antimicrobial Effect of Organic Acid and Distribution of Vibrio parahaemolyticus from the Incheon Adjacent Sea (연안 해역에서 분리한 Vibrio parahaemolyticus에 대한 유기산의 증식억제 효과)

  • Jang, Jae-Seon;Kim, Yong-Hee;Yoon, Byoung-Jun
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.3
    • /
    • pp.209-213
    • /
    • 2009
  • This study was carried out to investigate the distribution of V. parahaemolyticus in Incheon adjacent sea, and anti-microbial effect on growth of V. parahaemolyticus in organic acid. The detected strains were compared for geography, months and sample types. V. parahaemolyticus was detected form 28.5 percent of 287 samples collected from Incheon area, and 34.7 percent of 91 samples collected in the months of July through September, and 24.7 percent of 279 shellfish samples respectively. The minimun inhibitory concentration(MIC) of organic acid in V. parahaemolyticus were 1,250ppm at propionic acid, citric acid and acetic acid, 2,500ppm at vanillic acid, respectively. MICs of combined treatment of acetic acid and vanillic acid, citric acid and vanillic acid, propionic acid and vanillic acid were 1,250 ppm. MICs of combined treatment of citric acid and acetic acid, propionic acid and acetic acid, propionic acid and citric acid was 12.5ppm. The antimicrobial effect of organic acid in V. parahaemolyticus was confirmed from the result of this experiment.

Studies on the Effect of korean Ginseng Components on Acetic acid Fermentation. [I] (인삼성분이 초산발효에 미치는 영향에 관한 연구(제1보))

  • 남성희;유태종
    • Journal of Ginseng Research
    • /
    • v.4 no.2
    • /
    • pp.121-132
    • /
    • 1980
  • In order to study the effect of Korean ginseng (Panax ginseng C. A. Meyer) components on acetic acid fermentation, ginseng extracts, sucrose, total can de saponins were added to the basal niedium respectively and surface culture was carried out at 30$^{\circ}C$. Lag ime, total acidity of the fermentation broth inhibitors and the degrees of inhibition were determined in tile course of fermentation . 1. Acetic acid fermentation was not inhibited by the addition of less than 1.93% of sucrose but the degree of inhibition was increased slightly by the addition of sucrose more than that. 2. Ginseng extract inhibited acetic acid fermentation slightly, and the degree of inhibition was similar to that of sucrose. Lag time was about 72 hours when a 20% of ginseng extract was added to the basal medium while that of the control was 22hours. 3. The free saponins inhibited acetic acid fermentation considerably, and the degree of inhibition of the saponins was about 400 folds of that of ginseng extracts. An increase of total acidity of the broth which contained 2.905% of the saponins was not observed even after one month. 4. It was presumed that some other components except saponins and sucrose in ginseng extracts counter the inbition effect of saponins on acetic acid fermentation

  • PDF