• Title/Summary/Keyword: accurate prediction

Search Result 2,185, Processing Time 0.025 seconds

Study on the prediction model of environmental noise from the conventional railway passenger cars (기존선 여객열차의 환경소음 예측모델 연구)

  • Jang, Seungho;Jang, Eunhae;Son, Jung Gon;Park, Byoungju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.564-569
    • /
    • 2013
  • An accurate railway environmental noise prediction model is required to make the proper solution of the railway noise problems. In this paper, an engineering model for predicting the noise of conventional passenger cars is presented considering the acoustic source strength in octave-band frequencies and the propagation over grounds with varying surface properties. Since the formation of a train can be variable, the source strength of each locomotive and passenger car was estimated by measuring the pass-by noise and analysing the wheel-rail rolling noise. Some validation cases show on the average small differences between the predictions of the present model and the measurement results.

  • PDF

The Prediction of Concrete Creep

  • Shon, Howoong;Kim, Youngkyung
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.277-282
    • /
    • 2004
  • Creep deformation of concrete is often responsible for excessive deflection at loads which can compromise the performance of elements within structures. Hence, the prediction of the magnitude and rate of creep strain is an important requirement of the design process and management of structures. Although laboratory tests may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically based national design code models are relied upon to predict the magnitude of creep strain.This paper reviews the accuracy of creep predictions yielded by eight commonly used international "code type" models, all of which do not consider the same material parameters and yield a range of predicted strains, when compared with actual strains measured on a range of concretes in seventeen different investigations. The models assessed are the: SABS 0100 (1992), BS 8110 (1985), ACI 209 (1992), AS 3600 (1998), CEB-FIP (1970, 1978 and 1990) and the RILEM Model B3 (1995). The RILEM Model B3 (1995) and CEB-FIP (1978) were found to be the most and least accurate, respectively.

  • PDF

Early Warning System for Inventory Management using Prediction Model and EOQ Algorithm

  • Majapahit, Sali Alas;Hwang, Mintae
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.221-227
    • /
    • 2021
  • An early warning system was developed to help identify stock status as early as possible. For performance to improve, there needs to be a feature to predict the amount of stock that must be provided and a feature to estimate when to buy goods. This research was conducted to improve the inventory early warning system and optimize the Reminder Block's performance in minimum stock settings. The models used in this study are the single exponential smoothing (SES) method for prediction and the economic order quantity (EOQ) model for determining the quantity. The research was conducted by analyzing the Reminder Block in the early warning system, identifying data needs, and implementing the SES and EOQ mathematical models into the Reminder Block. This research proposes a new Reminder Block that has been added to the SES and EOQ models. It is hoped that this study will help in obtaining accurate information about the time and quantity of repurchases for efficient inventory management.

FORECASTING THE COST AND DURATION OF SCHOOL RECONSTRUCTION PROJECTS USING ARTIFICIAL NEURAL NETWORK

  • Ying-Hua Huang ;Wei Tong Chen;Shih-Chieh Chan
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.913-916
    • /
    • 2005
  • This paper presents the development of Artificial Neural Network models for forecasting the cost and contract duration of school reconstruction projects to assist the planners' decision-making in the early stage of the projects. 132 schools reconstruction projects in central Taiwan, which received the most serious damage from the Chi-Chi Earthquake, were collected. The developed Artificial Neural Network prediction models demonstrate good prediction abilities with average error rates under 10% for school reconstruction projects. The analytical results indicate that the Artificial Neural Network model with back-propagation learning is a feasible method to produce accurate prediction results to assist planners' decision-making process.

  • PDF

Prediction of sharp change of particulate matter in Seoul via quantile mapping

  • Jeongeun Lee;Seoncheol Park
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.259-272
    • /
    • 2023
  • In this paper, we suggest a new method for the prediction of sharp changes in particulate matter (PM10) using quantile mapping. To predict the current PM10 density in Seoul, we consider PM10 and precipitation in Baengnyeong and Ganghwa monitoring stations observed a few hours before. For the PM10 distribution estimation, we use the extreme value mixture model, which is a combination of conventional probability distributions and the generalized Pareto distribution. Furthermore, we also consider a quantile generalized additive model (QGAM) for the relationship modeling between precipitation and PM10. To prove the validity of our proposed model, we conducted a simulation study and showed that the proposed method gives lower mean absolute differences. Real data analysis shows that the proposed method could give a more accurate prediction when there are sharp changes in PM10 in Seoul.

Investigation of random fatigue life prediction based on artificial neural network

  • Jie Xu;Chongyang Liu;Xingzhi Huang;Yaolei Zhang;Haibo Zhou;Hehuan Lian
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.435-449
    • /
    • 2023
  • Time domain method and frequency domain method are commonly used in the current fatigue life calculation theory. The time domain method has complicated procedures and needs a large amount of calculation, while the frequency domain method has poor applicability to different materials and different spectrum, and improper selection of spectrum model will lead to large errors. Considering that artificial neural network has strong ability of nonlinear mapping and generalization, this paper applied this technique to random fatigue life prediction, and the effect of average stress was taken into account, thereby achieving more accurate prediction result of random fatigue life.

Performance Evaluation of Unidirectional and Bidirectional Recurrent Neural Networks (단방향 및 양방향 순환 신경망의 성능 평가)

  • Sammy Yap Xiang Bang;Kyunghee Jung;Hyunseung Choo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.652-654
    • /
    • 2023
  • The accurate prediction of User Equipment (UE) paths in wireless networks is crucial for improving handover mechanisms and optimizing network performance, particularly in the context of Beyond 5G and 6G networks. This paper presents a comprehensive evaluation of unidirectional and bidirectional recurrent neural network (RNN) architectures for UE path prediction. The study employs a sequence-to-sequence model designed to forecast user paths in a wireless network environment, comparing the performance of unidirectional and bidirectional RNNs. Through extensive experimentation, the paper highlights the strengths and weaknesses of each RNN architecture in terms of prediction accuracy and computational efficiency. These insights contribute to the development of more effective predictive path-based mobility management strategies, capable of addressing the challenges posed by ultra-dense cell deployments and complex network dynamics.

2-Level Adaptive Branch Prediction Based on Set-Associative Cache (세트 연관 캐쉬를 사용한 2단계 적응적 분기 예측)

  • Shim, Won
    • The KIPS Transactions:PartA
    • /
    • v.9A no.4
    • /
    • pp.497-502
    • /
    • 2002
  • Conditional branches can severely limit the performance of instruction level parallelism by causing branch penalties. 2-level adaptive branch predictors were developed to get accurate branch prediction in high performance superscalar processors. Although 2 level adaptive branch predictors achieve very high prediction accuracy, they tend to be very costly. In this paper, set-associative cached correlated 2-level branch predictors are proposed to overcome the cost problem in conventional 2-level adaptive branch predictors. According to simulation results, cached correlated predictors deliver higher prediction accuracy than conventional predictors at a significantly lower cost. The best misprediction rates of global and local cached correlated predictors using set-associative caches are 5.99% and 6.28% respectively. They achieve 54% and 17% improvements over those of the conventional 2-level adaptive branch predictors.

A Study on Stock Trend Determination in Stock Trend Prediction

  • Lim, Chungsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.35-44
    • /
    • 2020
  • In this study, we analyze how stock trend determination affects trend prediction accuracy. In stock markets, successful investment requires accurate stock price trend prediction. Therefore, a volume of research has been conducted to improve the trend prediction accuracy. For example, information extracted from SNS (social networking service) and news articles by text mining algorithms is used to enhance the prediction accuracy. Moreover, various machine learning algorithms have been utilized. However, stock trend determination has not been properly analyzed, and conventionally used methods have been employed repeatedly. For this reason, we formulate the trend determination as a moving average-based procedure and analyze its impact on stock trend prediction accuracy. The analysis reveals that trend determination makes prediction accuracy vary as much as 47% and that prediction accuracy is proportional to and inversely proportional to reference window size and target window size, respectively.

Effect of Path Loss Models for CDMA Base Station Deployment in LOS Environments (LOS 환경에서 CDMA 기지국 배치를 위한 Path Loss Model의 영향)

  • Min, Seung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1A
    • /
    • pp.1-7
    • /
    • 2011
  • Cell Capacity and cell layout are strongly dependent on the up-link interference caused by out-of-cell mobiles. Accurate prediction of the propagation path loss from out-of-cell mobiles is essential to achieve system designs that minimize the infrastructure required for a given quality of service (QOS). Less accurate predictions can be expected to yield designs requiring the use of a greater number of base stations. In order to quantify the dependence of infrastructure on prediction accuracy, this paper considers the cellular systems, LOS (line of sight) cells along a road or highway.