• Title/Summary/Keyword: accidents of hazardous materials

Search Result 87, Processing Time 0.03 seconds

A Study on the Response Technique for Toxic Chemicals Release Accidents - Hydrogen Fluoride and Ammonia - (독성 화학물질 누출사고 대응 기술연구 - 불산 및 암모니아 누출을 중심으로 -)

  • Yoon, Young Sam;Cho, Mun Sik;Kim, Ki Joon;Park, Yeon Shin;Hwang, Dong Gun;Yoon, Jun heon;Choi, Kyung Hee
    • Korean Journal of Hazardous Materials
    • /
    • v.2 no.1
    • /
    • pp.31-37
    • /
    • 2014
  • Since the unprecedented hydrogen fluoride leak accident in 2012, there has been growing demand for customized technical information for rapid response and chemical accident management agencies including the Ministry of Environment, the National Emergency Management Agency, and the National Police Agency need more information on chemicals and accident management. In this regard, this study aims to provide reliable technical data and guidelines to initial response agencies, similar to accident management technical reports of the US and Canada. In this study, we conducted a questionnaire survey and interviews on initial response agencies like fire stations, police stations, and local governments to identify new information items for appropriate initial response and improvements of current guidelines. We also collected and reviewed the Canada's TIPS, US EPA's hydrogen fluoride documents, domestic and foreign literature on applicability tests of control chemicals, and interview data, and then produced items to be listed in the technical guidelines. In addition, to establish database of on-site technical information, we carried out applicability tests for accident control data including ① emergency shut down devide, safety guard, shut down valve, ground connection, dyke, transfer pipe, scrubber, and sensor; ② literature and field survey on distribution type and transportation/storage characteristics (container identification, valve, ground connection, etc.); ③ classification and identification of storage/transportation facilities and emergency management methodslike leak prevention, chemicals control, and cutoff or bypass of rain drainage; ④ domestic/foreign analysis methods and environmental standards including portable detection methods, test standards, and exposure limits; and ⑤ comparison/evaluation of neutralization efficiency of control chemicals on toxic substances.

A Study on the Range of Damage Effects of Benzene Leakage Accidents using the KORA Program (KORA 프로그램을 활용한 벤젠 누출사고 피해영향범위에 관한 연구)

  • Cha, Jeong-Min
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.112-120
    • /
    • 2019
  • Benzene is a class 4 hazardous material according to the Act on the Safety Control of Hazardous Substances. This study qualitatively evaluated the damage size of a "toxic" accident and "pool fire" accidents based on benzene in a virtual scenario of a fire and leakage accident during unloading at a port facility. The KORA program was used as an evaluation method, which is supported as a universal program by the National Institute of Chemical Safety. The range of damage effects of a benzene-induced fire and leakage accident was predicted. In the case of toxic damage range, the accident's damage effect range for the "worst case scenario" was reduced by up to 5.11% with a decrease in the size of the leakage hole. In the case of the leakage time, the damage effect range increased to 145.12% with a 10 min leakage time compared to that of a 5 min leakage time and went up to 20 min (212.29%) with a 20 min leakage time. In the case of pool-fire-induced damage, the damage effect range by radiant heat in the "worst case scenario" was 228.8 m in radius from the center of the handling facility. In the "alternative scenario," the damage effect range by radiant heat was reduced by up to 8.26% compared to that in the "worst case scenario" since the size of the leakage hole was decreased by reducing the cross-sectional area of the pipe.

Numerical Modeling for Effect on Bund Overtopping Caused by a Catastrophic Failure of Chemical Storage Tanks (저장시설의 순간 전량 방출 시 방류벽의 월파 효과에 대한 수치모델링)

  • Min, Dong Seok;Phark, Chuntak;Jung, Seungho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.42-50
    • /
    • 2019
  • As the industry develops in Korea, the use of hazardous chemicals is increasing rapidly and chemical accidents are increasing accordingly. Most of the chemical accidents are caused by leaks of hazardous chemicals, but there are also accidents in which all the substances are released instantaneously due to sudden high temperature/pressure or defection of the storage tanks. This is called catastrophic failure and its frequency is very low, but consequence is very huge when it occurs. In Korea, there were 15 casualties including three deaths due to catastrophic rupture of water tank in 2013, and 64 instances of failures from 1919 to 2004 worldwide. In case of catastrophic failure, it would be able to overflow outside the bund that reduces the evaporation rate and following consequence. This incident is called overtopping. Overseas, some researchers have been studying the amount of external overflow depending on bund conditions in the event of such an accident. Based on the previous research, this study identified overtopping fraction by condition of bund in accordance with Korea Chemicals Controls Act Using CFD simulation. As a result, as the height increases and the distance to the facility decreases while meeting the minimum standard of the bund capacity, the overtopping effect has decreased. In addition, by identifying the effects of overtopping according to atmospheric conditions, types of materials and shapes of bunds, this study proposes the design of the bund considering the effect of overtopping caused by catastrophic failure with different bund conditions.

A Study on the Actual Conditions of Inflammables and Explosives in Army Camps (군부대 위험물 실태 조사에 관한 연구)

  • Shin, Mi-Hwa;Yoon, Myong-O;Hyun, Seong-Ho;Jeong, Dok-Kun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.82-92
    • /
    • 2009
  • This study analyzed the present operation state and cases of safety accidents of inflammables and explosives in army camps by focusing on staffs in charge for safety supervision of inflammables and explosives in army camps. Moreover, through this analysis, the study surveyed the actual safety supervision conditions in a workplace related to the hazardous materials, the safety plan for inflammables and explosives, the quality of education for safety supervision, the consciousness of safety supervisors for the safety supervision of inflammables and explosives, and so on. On basis of this research, the actual conditions of inflammables and explosives in army camps were investigated. By not only establishing the systematic safety plan but also developing the safety supervision education programs to manage inflammables and explosives in army camps safely, this study tries to arouse military officers' interest and ensure a safe workplace. Furthermore, this study presents public relations and revitalization of the education to make safety supervisors for inflammables and explosives and the interested parties recognize the hazards of safety accidents, by cutting them off from safety accidents in advance.

  • PDF

Experiment and Simulation of Acoustic Detection for the Substitute for Sunken Hazardous and Noxious Substances Using the High Frequency Active Sonar (고주파 능동소나를 이용한 저층 침적 위험유해물질 대체물질 음향 탐지 실험 및 모의)

  • Han, Dong-Gyun;Seo, Him Chan;Choi, Jee Woong;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.459-466
    • /
    • 2018
  • Hazardous and Noxious Substances (HNS) are defined as substances that are likely to create a significant impact on human health and marine ecosystem when they are released into the marine environment. Recently, as the volume of HNS transported by ships increases, the rate of leakage accidents also increases. Therefore, research should be conducted to control and monitor sunken materials from the viewpoint of technology development for hazardous material leakage accident response. In this paper, acoustic detection experiments were carried out using HNS substitute materials in order to confirm the possibility of acoustic detection of sunken HNS on the sediment. The castor oil, which has a similar acoustic impedance with chloroform, is used as a substitute. 200 kHz high frequency signals were used to discriminate the reflected signals and measure reflection loss from the interface between water and castor oil. The reflection loss measured is in good agreement with the modeling results, showing a possibility of acoustic detection for sunken HNS.

Quantitative Fire Risk Assessment and Counter Plans Based on FDS and GIS for National Road Bridges (FDS와 GIS를 이용한 교량 화재 위험도의 정량적 평가 및 적용방안)

  • Ann, Ho June;Park, Cheol Woo;Kim, Yong Jae;Jang, Young Ik;Kong, Jung Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.185-195
    • /
    • 2017
  • In recent years, unexpected bridge fire accidents have increased because of augmenting the number of traffic volumes and hazardous materials by the increment in traffics and distribution business. Furthermore, in accordance with the effort of using the under space of bridges, the ratio of occupied by combustible materials like oil tanker or lorry has been increased. As a result, the occurrence of bridge fire has been growing drastically. In order to mitigate the accident of bridge fire, risk assessment of bridge fire has been studied, however, practical risk models considering safety from users' viewpoints were scarce. This study represented quantitative risk assessment model applicable to national road bridges in Korea. The primary factors with significant impacts on bridge fire accidents was chosen such as clearance height, materials of bridges, arrival time of fire truck and fire intensity. The selected factors were used for Fire Dynamics Simulation (FDS) and the peak temperature calculated by FDS in accordance with the fire duration and fire intensity. The risk assessment model in bridge fire reflected the FDS analysis results, the fire damage criteria, and the grade of fire truck arrival time was established. Response plans for bridge fire accidents according to the risk assessment output has been discussed. Lastly, distances between bridges and fire stations were calculated by GIS network analysis. Based on the suggested assessment model and methodology, sample bridges were selected and graded for the risk assessment.

Resolution Method of Hazard Factor for Life Safety in Rental Housing Complex (임대주택단지의 생활안전 위해요인 해소방안)

  • Sohn, Jeong-Rak;Cho, Gun-Hee;Kim, Jin-Won;Song, Sang-Hoon
    • Land and Housing Review
    • /
    • v.8 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • The government has been constructing and supplying public rental housing to ordinary people in order to stabilize housing since 1989. However, the public rental houses initially supplied to ordinary people are at high risk for safety accidents due to the deterioration of the facilities. Therefore, this study is aimed to propose a solution to solve the life safety hazards of the old rental housing complex as a follow-up study of Analysis of Accident Patterns and Hazard Factor for Life Safety in Rental Housing Complex. Types of life safety accidents that occur in public rental housing complexes are sliding, falling, crash, falling objects, breakage, fire accidents, traffic accidents and criminal accidents. The types of safety accidents that occur in rental housing complexes analyzed in this study are sliding, crashes, falling objects, and fire accidents. Although the incidence of safety accidents such as falling, breakage, traffic accidents and crime accidents in public rental housing complexes is low, these types are likely to cause safety accidents. The method of this study utilized interviews and seminar results, and it suggested ways to solve the life safety hazards in rental housing complexes. Interviews were conducted with residents and managers of rental housing complexes. Seminars were conducted twice with experts in construction, maintenance, asset management, housing welfare and safety. Through interviews and seminars, this study categorizes the life safety hazards that occur in rental housing complexes by types of accidents and suggests ways to resolve them as follows. (1) sliding ; use of flooring materials with high friction coefficient, installation of safety devices such as safety handles, implementation of maintenance, safety inspections and safety education, etc. (2) falling ; supplementation of safety facilities, Improvement of the design method of the falling parts, Safety education, etc. (3) crash ; increase the effective width of the elevator door, increase the effective width of the lamp, improve the lamp type (U type ${\rightarrow}$ I type), etc. (4) falling objects and breakage ; design of furniture considering the usability of residents, replacement of old facilities, enhancement of safety consciousness of residents, safety education, etc. (5) fire accidents ; installation of fire safety equipment, improvement by emergency evacuation, safety inspection and safety education, etc. (6) traffic accidents ; securing parking spaces, installing safety facilities, conducting safety education, etc. (7) criminal accidents; improvement of CCTV pixels, installation of street lights, removal of blind spots in the complex, securing of security, etc. The roles of suppliers, administrators and users of public rental housing proposed in this study are summarized as follows. Suppliers of rental housing should take into consideration the risk factors that may arise not only in the design and construction but also in the maintenance phase and should consider the possibility of easily repairing old facilities considering the life cycle of rental housing. Next, Administrators of rental housing should consider the safety of the users of the rental housing, conduct safety checks from time to time, and immediately remove any hazardous elements within the apartment complex. Finally, the users of the rental housing needs to form a sense of ownership of all the facilities in the rental housing complex, and efforts should be made not to cause safety accidents caused by the user's carelessness. The results of this study can provide the necessary information to enable residents of rental housing complexes to live a safe and comfortable residential life. It is also expected that this information will be used to reduce the incidence of safety accidents in rental housing complexes.

Study on Establishment of management standards of Chemistry laboratory handling harzadous substances and improvement of system (유해·위험물질 취급 화학실험실 관리 기준 정립 및 체계 개선에 관한 연구)

  • Cho, Nam-Joon;Lee, Man-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.4
    • /
    • pp.57-72
    • /
    • 2016
  • There are more than 30,000 chemical substances handled in domestic university laboratories. Among them, hazardous materials are selected and managed as designated substances by the standards of 19 Ministries and 16 Acts. However, domestic safety-related laws and regulations are used to manage industrial risk factors based on industrial activities. In case of installing a university chemical laboratory in accordance with the installation standards applicable to general workplaces. It is not suitable to use as a laboratory installation standard that can be applied to a chemical laboratory installed at a university such as a problem occurs in applying to a university using a small quantity of dangerous substances in a small amount. In order to establish the laboratory structure and facility standards that are appropriate for the laboratory characteristics and apply systematic laboratory safety, the National Security Administration shall apply the special handling standard of chemical experiment to places where handling less than 30 times the designated quantity of chemical substances for chemical experiments. On August 2, 2016, the regulations for the enforcement of the Dangerous Goods Safety Management Act and the standards for the structure and facilities of the university chemical laboratory were enacted. In this study, we investigated the domestic chemical substances laws and regulations to determine the chemical substances that are over-regulated in the relevant laws, and define them as substances against accidents. The management criteria for the substances were analyzed. The R value for the designation of the designated quantity by the concept of the space in the management standard was calculated.

A Study on Workers' Risk-Aware Smart Bands System in Explosive Areas (폭발위험지역 근로자 위험 인지형 스마트밴드시스템에 대한 연구)

  • Lee, Byong-Kwon
    • Journal of Internet of Things and Convergence
    • /
    • v.5 no.2
    • /
    • pp.73-79
    • /
    • 2019
  • Research is underway on services and systems that provide real-time alerts for suffocating gases and potentially explosive materials, but currently smart bend type services are lacking. This study supports real-time identification of explosion hazards due to static electricity in the workplace and immediate elimination of accident occurrence factors, real-time monitoring of worker status and workplace hazards (oxygen, hazardous chemical concentration), and immediate warning and data in case of danger. We propose a method of establishing an accident prevention system through analysis. In this way, various accidents that may occur in industrial sites are monitored using IoT-based intelligent sensor nodes, wireless network technology, data processing middleware, and integrated control system, and real-time risk information at the industrial sites is prevented and accidents are prevented. By supporting a safe working environment, the company can significantly reduce costs compared to post-procurement costs.

Development of Risk Representation System for Chemical Plane (화학공장의 위험도 표현 시스템 개발)

  • Ko Jae Wook;Lee Jung Woo;Lim Dong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.2 s.27
    • /
    • pp.28-33
    • /
    • 2005
  • Because chemical industrial facilities deal with large amount of hazardous materials, the damage affect to off-site as well as on-site when an accident occurs. So it is necessary to develop a Risk Representation System for effective control and response to major accidents. In this study a Risk Representation System(S/W) was developed to help analyzing actual risk and to set an alternative that can reduce the analyzed risk by drawing the level of individual plant's risk on a digital map network.

  • PDF