• 제목/요약/키워드: accelerometer bias

검색결과 40건 처리시간 0.029초

유비쿼터스 환경에서 사용 가능한 핸드 헬드형 3차원 움직임 추적장치 (A Handheld 3-Dimensional Motion Tracking Device for Ubiquitous Computing Environment)

  • 박명관;이상훈;서일홍
    • 제어로봇시스템학회논문지
    • /
    • 제11권12호
    • /
    • pp.1045-1050
    • /
    • 2005
  • This paper describes a design experience of a low-cost 6 DOF spatial tracker system where relative low accuracy and relatively long ranges, wireless communication will be achieved by means of low cost accelerometers and gyros with contemporary microprocessor. However, there are two key problems; one is the bias drift problem and the other is that single or double integration of acceleration signal suffers not only from noise but also from nonlinear effects caused by gravity. To be specific, beginning and stopping of hand motions needs to be accurately detected to initiate and terminate integration process to get position and pose of the hand from accelerometer and gyro signals, since errors due to noise and/or hand-shaking motions accumulated by integration processes. Several experimental results are shown to validate our proposed algorithms.

저급 관성센서의 오차 분석 및 성능 향상에 관한 연구 (A Study on the Error Analysis and Performance Improvement of Low-Cost Inertial Sensors)

  • 박문수;원종훈;홍석교;이자성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.28-28
    • /
    • 2000
  • Low-cost solid-state inertial sensors of three rate Gyroscopes and a triaxial Accelerometer are evaluated in static and dynamic environments. As a interim result, error models of each inertial sensors are generated. Model parameters with respect to temperature are acquired in static environment. These error models are included in an Extended Kalman Filter(EKF) to compensate bias error due to temperature variation. Experimental results in dynamic environment are included to show the validity of the each error model and the performance improvement of a compensated low cost inertial sensors for a navigational application

  • PDF

고등학생의 비만 여부에 따른 8가지 걷기 활동의 에너지 소비량 비교 - 간접열량계 및 허리와 발목에 착용한 가속도계를 이용하여 - (Energy Expenditure of Eight Walking Activities in Normal Weight and Obese High School Students - Using an Indirect Calorimeter and Accelerometers Worn on Ankle and Waist -)

  • 김예진;안해선;김은경
    • 대한영양사협회학술지
    • /
    • 제23권1호
    • /
    • pp.78-93
    • /
    • 2017
  • The purposes of this study were to assess energy expenditure of eight walking activities in normal weight and overweight or obese high school students and to evaluate the accuracy of two accelerometers worn on the ankle and waist. Thirty-five (male 17, female 18) healthy high school students participated in this study. They were classified into normal weight (n=21) and overweight or obese (n=14) groups. The subjects completed five treadmill walking activities (TW2.4, TW3.2, TW4.0, TW4.8, TW5.6), followed by three self-selected hallway walking activities (walk as if walking and talking with a friend: HWL, walk as if hurrying across the street at a cross-walk: HWB, walk as fast as you can but do not run: HWF). Energy expenditure and metabolic equivalents (METs) were measured using a portable indirect calorimeter, and predicted energy expenditures and METs were derived from two accelerometers placed on the ankle and waist. Measured energy expenditures per body weight (kg) of eight walking activities were significantly higher in the normal weight group than in the obese group and significantly higher in female than male. The ankle accelerometer overestimated energy expenditures and METs (bias 49.4~105.5%), whereas the waist accelerometer underestimated energy expenditures and METs (bias -30.3~-85.8). Except for HWF (fast) activity, METs of seven activities were moderate intensity based on Compendium METs intensity categories. HWF (fast) activity was vigorous intensity. METs from the ankle accelerometer were vigorous intensity except TW2.4 activity (moderate intensity). METs from the waist accelerometer were low intensity (TW2.4, TW3.2, TW4.0, TW4.8, HWL) and moderate intensity (TW5.6, HWB, HWF). Physical activity guidelines were developed based on measured physical activity level of high school students. Further studies should investigate the effects of body composition in larger subjects.

이동거리측정을 위한 가속도센서의 보정 알고리즘 (Accelerometer Compensation Algorithm for Distance Measurement)

  • 이병희;박명관
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2345-2347
    • /
    • 2001
  • 본 연구에서는 반도체형으로 생산된 가속도센서를 적용하여 거리를 측정하는데 있어 문제점에 대해 언급하고, bias drift error에 따른 적분 누적오차를 줄이기 위한 방법으로 random noise를 감소시키고 위치추정을 위한 데이터 융합에 가장 일반적으로 적용되는 Kalman Filter 알고리즘을 적용하여 가속도 데이터를 상대적 위치 데이터로 변환하여 거리측정에 적용하였다. 또한 가속도센서를 관절형 로봇에 부착시켜 실험하여 이동거리를 산출하는 실험을 수행하였다. 실험 결과 보상 알고리즘을 사용했을 때의 zero drift error과 누적오차가 감소됨을 알 수 있었다.

  • PDF

시선벡터를 이용한 관성항법장치의 보정기법 (Compensation of SDINS Navigation Errors Using Line-Of-Sight Vector)

  • 임유철;임정빈;유준
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2521-2524
    • /
    • 2003
  • Since inertial sensor errors which increase with time are caused by initial orientation error and sensor errors (accelerometer bias and gyro drift bias), the accuracy of these devices, while still improving, is not adequate for many of today's high-precision, long-duration sea, aircraft, and long-range missile missions. This paper presents a navigation error compensation scheme for Strap-Down Inertial Navigation System (SDINS) using Line-Of-Sight(LOS) vector from star sensor. To be specific, SDINS error model and measurement equation are derived, and Kalman filter is implemented. Simulation results show the bounded-ness of position and attitude errors.

  • PDF

자이로 컴파스 얼라인먼트 오차특성을 고려한 스트랩다운 관성항법장치의 상호분산해석 (Covariance analysis of strapdown INS considering characteristics of gyrocompass alignment errors)

  • 박흥원;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.34-39
    • /
    • 1993
  • Presented in this paper is a complete error covariance analysis for strapdown inertial navigation system(SDINS). We have found that in SDINS the cross-coupling terms in gyrocompass alignment errors can significantly influence the SDINS error propagation. Initial heading error has a close correlation with the east component of gyro bias erro, while initial level tilt errors are closely related to accelerometer bias errors. In addition, pseudo-state variables are introduced in covariance analysis for SDINS utilizing the characteristics of gyrocompass alignment errors. This approach simplifies the covariance analysis because it makes the initial error covariance matrix to a diagonal form. Thus a real implementation becomes easier. The approach is conformed by comparing the results for a simplified case with the covariance analysis obtained from the conventional SDINS error model.

  • PDF

A SDINS Error Compensation Scheme Using Star Tracker

  • Yim, Jong-Bin;Lyou, Joon;Lim, You-Chol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.888-893
    • /
    • 2005
  • Since inertial sensor errors which increase with time are caused by initial orientation error and sensor errors(accelerometer bias and gyro drift bias), the accuracy of these devices, while still improving, is not adequate for many of today's high-precision, long-duration sea, aircraft, and long-range flight missions. This paper presents a navigation error compensation scheme for Strap-Down Inertial Navigation System(SDINS) using star tracker. To be specific, SDINS error model and measurement equation are derived, and Kalman filter is implemented. Simulation results show the boundedness of position and attitude errors.

  • PDF

온도 변화율을 이용한 자이로 바이어스 히스테리시스 오차 보상 기법 (Compensation Method of Gyro Bias Hysteresis Error using the Rate of Temperature)

  • 유해성;김천중;성창기;이인섭;박상은;박흥원
    • 한국군사과학기술학회지
    • /
    • 제18권2호
    • /
    • pp.109-114
    • /
    • 2015
  • A method to compensate a bias hysteresis error of the ring laser gyro using the rate of temperature is proposed in this paper. Until now, we generally have measured and compensated the error of gyro and accelerometer using the temperature. However, we utilize the measured values of the temperature dependent error elements on the temperature rate in navigation system level. We show through experiments that the proposed method can improve the navigation performance and be very effective.

Integrated Navigation System Design of Electro-Optical Tracking System with Time-delay and Scale Factor Error Compensation

  • Son, Jae Hoon;Choi, Woojin;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권2호
    • /
    • pp.71-81
    • /
    • 2022
  • In order for electro-optical tracking system (EOTS) to have accurate target coordinate, accurate navigation results are required. If an integrated navigation system is configured using an inertial measurement unit (IMU) of EOTS and the vehicle's navigation results, navigation results with high rate can be obtained. Due to the time-delay of the navigation results of the vehicle in the EOTS and scale factor errors of the EOTS IMU in high-speed and high dynamic operation of the vehicle, it is much more difficult to have accurate navigation results. In this paper, an integrated navigation system of EOTS which compensates time-delay and scale factor error is proposed. The proposed integrated navigation system consists of vehicle's navigation system which provides time-delayed navigation results, an EOTS IMU, an inertial navigation system (INS), an augmented Kalman filter and integration Kalman filter. The augmented Kalman filter outputs navigation results, in which the time-delay of the vehicle's navigation results is compensated. The integration Kalman filter estimates position, velocity, attitude error of the EOTS INS and accelerometer bias, accelerometer scale factor error, gyro bias and gyro scale factor error from the difference between the output of the augmented Kalman filter and the navigation result of the EOTS INS. In order to check performance of the proposed integrated navigation system, simulations for output data of a measurement generator and land vehicle experiments were performed. The performance evaluation results show that the proposed integrated navigation system provides more accurate navigation results.

TPMS용 4빔 실리콘 미세 압저항형 가속도센서의 설계 및 제작 (Design and Fabrication of 4-beam Silicon-Micro Piezoresistive Accelerometer for TPMS Application)

  • 박기웅;김현철
    • 대한전자공학회논문지SD
    • /
    • 제49권2호
    • /
    • pp.1-8
    • /
    • 2012
  • 본 논문은 자동차용 타이어 공기압 모니터링 시스템(TPMS)의 핵심 부품인 가속도센서에 관한 연구이다. 일반적으로 압저항형 가속도센서는 정전용량형 가속도센서에 비하여 제조 비용이 적고 출력 특성이 선형적이며 주변 잡음에 면역성이 강한 장점을 갖는다. 그래서 TPMS용으로 압저항형을 선택하였고, ANSYS 프로그램을 이용하여 3가지 타입의 구조를 설계하여 공진주파수 특성을 비교하여 가장 안정적인 구조인 질량체 가장자리의 가운데에 있는 4개의 빔에 의하여 지지되는 브릿지 타입의 실리콘압저항형 가속도센서를 선택하였다. 그리고 센서 크기를 고려하여 빔의 길이는 $200{\mu}m$로 정하였으며, 빔 길이에 따른 최대응력과 최대변위를 시뮬레이션하여 센서를 설계하였다. TPMS용 4 빔 실리콘 미세 압저항형 가속도센서의 크기는 $3.0mm{\times}3.0mm{\times}0.4mm$의 크기로 제작 되었다. 휠 각도에 따른 출력 특성과 온도 특성을 측정하여 센서의 특성을 분석 하였다. 그 결과 가속도센서의 옵셋 전압은 43.2 mV 이고 감도는 $42.5{\mu}V/V/g$ 이다. 센서의 특징으로 내충격성은 1500 g 이고, 측정 범위는 0 ~ 60 g, 사용온도는 $-40^{\circ}C{\sim}125^{\circ}C$ 를 갖는다.