• Title/Summary/Keyword: acceleration sequences

Search Result 22, Processing Time 0.021 seconds

Characterization of earthquake ground motion of multiple sequences

  • Moustafa, Abbas;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.5
    • /
    • pp.629-647
    • /
    • 2012
  • Multiple acceleration sequences of earthquake ground motions have been observed in many regions of the world. Such ground motions can cause large damage to the structures due to accumulation of inelastic deformation from the repeated sequences. The dynamic analysis of inelastic structures under repeated acceleration sequences generated from simulated and recorded accelerograms without sequences has been recently studied. However, the characteristics of recorded earthquake ground motions of multiple sequences have not been studied yet. This paper investigates the gross characteristics of earthquake records of multiple sequences from an engineering perspective. The definition of the effective number of acceleration sequences of the ground shaking is introduced. The implication of the acceleration sequences on the structural response and damage of inelastic structures is also studied. A set of sixty accelerograms is used to demonstrate the general properties of repeated acceleration sequences and to investigate the associated structural inelastic response.

Feasibility of Simultaneous Multislice Acceleration Technique in Diffusion-Weighted Magnetic Resonance Imaging of the Rectum

  • Jae Hyon Park;Nieun Seo;Joon Seok Lim;Jongmoon Hahm;Myeong-Jin Kim
    • Korean Journal of Radiology
    • /
    • v.21 no.1
    • /
    • pp.77-87
    • /
    • 2020
  • Objective: To assess the feasibility of simultaneous multislice-accelerated diffusion-weighted imaging (SMS-DWI) of the rectum in comparison with conventional DWI (C-DWI) in rectal cancer patients. Materials and Methods: This study included 65 patients with initially-diagnosed rectal cancer. All patients underwent C-DWI and SMS-DWI with acceleration factors of 2 and 3 (SMS2-DWI and SMS3-DWI, respectively) using a 3T scanner. Acquisition times of the three DWI sequences were measured. Image quality in the three DWI sequences was reviewed by two independent radiologists using a 4-point Likert scale and subsequently compared using the Friedman test. Apparent diffusion coefficient (ADC) values for rectal cancer and the normal rectal wall were compared among the three sequences using repeated measures analysis of variance. Results: Acquisition times using C-DWI, SMS2-DWI, and SMS3-DWI were 173 seconds, 107 seconds, (38.2% shorter than C-DWI), and 77 seconds (55.5% shorter than C-DWI), respectively. For all image quality parameters other than distortion (margin sharpness, artifact, lesion conspicuity, and overall image quality), C-DWI and SMS2-DWI yielded better results than did SMS3-DWI (Ps < 0.001), with no significant differences observed between C-DWI and SMS2-DWI (Ps ≥ 0.054). ADC values of rectal cancer (p = 0.943) and normal rectal wall (p = 0.360) were not significantly different among C-DWI, SMS2-DWI, and SMS3-DWI. Conclusion: SMS-DWI using an acceleration factor of 2 is feasible for rectal MRI resulting in substantial reductions in acquisition time while maintaining diagnostic image quality and similar ADC values to those of C-DWI.

Effect of the Acceleration and Deceleration on the Dynamic Characteristics of an Air Stage (에어 스테이지의 동적 특성에 미치는 가속도 및 감속도의 영향)

  • Park, Sang Joon;Lee, Jae Hyeok;Park, Sang-Shin;Kim, Gyu Ha
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.39-46
    • /
    • 2020
  • Air stages are usually applied to precision engineering in sectors such as the semiconductor industry owing to their excellent performance and extremely low friction. Since the productivity of a semiconductor depends on the acceleration and deceleration performance of the air stage, many attempts have been made to improve the speed of the stage. Even during sudden start or stop sequences, the stage should maintain an air film to avoid direct contact between pad and the rail. The purpose of this study is to quantitatively predict the dynamic behavior of the air stage when acceleration and deceleration occur. The air stage is composed of two parts; the stage and the guide-way. The stage transports objects to the guideway, which is supported by an externally pressurized gas bearing. In this study, we use COMSOL Multiphysics to calculate the pressure of the air film between the stage and the guide-way and solve the two-degree-of-freedom equations of motion of the stage. Based on the specified velocity conditions such as the acceleration time and the maximum velocity of stage, we calculate the eccentricity and tilting angle of the stage. The result shows that the stiffness and damping of the gas bearing have non-linear characteristics. Hence, we should consider the operating conditions in the design process of an air stage system because the dynamic behavior of the stage becomes unstable depending on the maximum velocity and the acceleration time.

A Unified Gradient Shape on the Slice-Selection Axis for Flow Compensation (스핀에코 펄스 시퀀스의 슬라이스 선택방향에서 혈류 보상을 위한 통일 경사자장법 연구)

  • Pickup, Stephen;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.70-80
    • /
    • 2006
  • Spin echo gradient moment nulling pulse sequences were designed and implemented on a clinical magnetic resonance imaging system. A new technique was introduced for flow compensation that minimized echo time and effectively suppresses unwanted echoes on the slice selection gradient axis in spin echo sequences. A unified gradient shape was used in all orders of flow compensation up to the third order. A dual-purpose gradient was applied for flow compensation and to reduce unwanted artifacts. The sequences were used to generate images of phantoms and/or human brains. This technique was especially good at reducing eddy currents and artifacts related to imperfection of the refocusing pulse. The developed sequences were found to have shorter echo times and better flow compensation in through-plane flow than those of the previous models that were used by other investigators.

  • PDF

OCR evaluation of cohesionless soil in centrifuge model using shear wave velocity

  • Cho, Hyung Ik;Sun, Chang Guk;Kim, Jae Hyun;Kim, Dong Soo
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.987-995
    • /
    • 2018
  • In this study, a relationship between small-strain shear modulus ($G_{max}$) and overconsolidation ratio (OCR) based on shear wave velocity ($V_S$) measurement was established to identify the stress history of centrifuge model ground. A centrifuge test was conducted in various centrifugal acceleration levels including loading and unloading sequences to cause various stress histories on centrifuge model ground. The $V_S$ and vertical effective stress were measured at each level of acceleration. Then, a sensitivity analysis was conducted using testing data to ensure the suitability of OCR function for the tested cohesionless soils and found that OCR can be estimated based on $V_S$ measurements irrespective of normally-consolidated or overconsolidated loading conditions. Finally, the developed $G_{max}$-OCR relationship was applied to centrifuge models constructed and tested under various induced stress-history conditions. Through a series of tests, it was concluded that the induced stress history on centrifuge model by compaction, g-level variation, and past overburden load can be analysed quantitatively, and it is convinced that the OCR evaluation technique will contribute to better interpret the centrifuge test results.

Highly Accelerated SSFP Imaging with Controlled Aliasing in Parallel Imaging and integrated-SSFP (CAIPI-iSSFP)

  • Martin, Thomas;Wang, Yi;Rashid, Shams;Shao, Xingfeng;Moeller, Steen;Hu, Peng;Sung, Kyunghyun;Wang, Danny JJ
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.4
    • /
    • pp.210-222
    • /
    • 2017
  • Purpose: To develop a novel combination of controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) with integrated SSFP (CAIPI-iSSFP) for accelerated SSFP imaging without banding artifacts at 3T. Materials and Methods: CAIPI-iSSFP was developed by adding a dephasing gradient to the balanced SSFP (bSSFP) pulse sequence with a gradient area that results in $2{\pi}$ dephasing across a single pixel. Extended phase graph (EPG) simulations were performed to show the signal behaviors of iSSFP, bSSFP, and RF-spoiled gradient echo (SPGR) sequences. In vivo experiments were performed for brain and abdominal imaging at 3T with simultaneous multi-slice (SMS) acceleration factors of 2, 3 and 4 with CAIPI-iSSFP and CAIPI-bSSFP. The image quality was evaluated by measuring the relative contrast-to-noise ratio (CNR) and by qualitatively assessing banding artifact removal in the brain. Results: Banding artifacts were removed using CAIPI-iSSFP compared to CAIPI-bSSFP up to an SMS factor of 4 and 3 on brain and liver imaging, respectively. The relative CNRs between gray and white matter were on average 18% lower in CAIPI-iSSFP compared to that of CAIPI-bSSFP. Conclusion: This study demonstrated that CAIPI-iSSFP provides up to a factor of four acceleration, while minimizing the banding artifacts with up to a 20% decrease in the relative CNR.

Accelerated Evolution of the Regulatory Sequences of Brain Development in the Human Genome

  • Lee, Kang Seon;Bang, Hyoeun;Choi, Jung Kyoon;Kim, Kwoneel
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.331-339
    • /
    • 2020
  • Genetic modifications in noncoding regulatory regions are likely critical to human evolution. Human-accelerated noncoding elements are highly conserved noncoding regions among vertebrates but have large differences across humans, which implies human-specific regulatory potential. In this study, we found that human-accelerated noncoding elements were frequently coupled with DNase I hypersensitive sites (DHSs), together with monomethylated and trimethylated histone H3 lysine 4, which are active regulatory markers. This coupling was particularly pronounced in fetal brains relative to adult brains, non-brain fetal tissues, and embryonic stem cells. However, fetal brain DHSs were also specifically enriched in deeply conserved sequences, implying coexistence of universal maintenance and human-specific fitness in human brain development. We assessed whether this coexisting pattern was a general one by quantitatively measuring evolutionary rates of DHSs. As a result, fetal brain DHSs showed a mixed but distinct signature of regional conservation and outlier point acceleration as compared to other DHSs. This finding suggests that brain developmental sequences are selectively constrained in general, whereas specific nucleotides are under positive selection or constraint relaxation simultaneously. Hence, we hypothesize that human- or primate-specific changes to universally conserved regulatory codes of brain development may drive the accelerated, and most likely adaptive, evolution of the regulatory network of the human brain.

Introduction and Expression of Foreign Genes in Rice Cells by Particle Bombardment

  • Jeon, Jong-Seong;Jung, Hou-Sung;Sung, Soon-Kee;Lee, Jong-Seob;Choi, Yang-Do;Kim, Han-Jip;Lee, Kwang-Woong
    • Journal of Plant Biology
    • /
    • v.37 no.1
    • /
    • pp.27-36
    • /
    • 1994
  • For establishing a transformation system of rice, an efficient introduction of foreign genes into embryogenic cell suspension by particle bombardment was conducted. The particle inflow gun based on the acceleration of DNA-coated tungsten particles using pressurized helium was constructed for delivery of DNA into rice cells. Several bombardment parameters were optimized using the transient expression of GUS gene. The conditions that gave the highest GUS gene expression of about 1000 blue spots per g fresh weight of bombarded cells include treatment of the cells with 0.5 M osmotic pressure, and use of the 410 kPa helium, 110 mm target distance, 13 mm syringe filter holder and 5 $\mu$L DNA/tungsten mixtures. It was also confirmed that rice actin promoter-intron construct gave the highest expression of all promoter-sequences studied. Eight weeks after the bombardment, stably transformed calluses were obtained on the selection medium containing 100 mg/L G418 and showed the strong activity in in situ GUS assay.

  • PDF

Statistical Characteristics and Complexity Analysis of HEVC Encoder Software (HEVC 부호화기 소프트웨어의 통계적 특성 및 복잡도 분석)

  • Ahn, Yongjo;Hwang, Taejin;Yoo, Sungeun;Han, Woo-Jin;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.1091-1105
    • /
    • 2012
  • In this paper, we analyzed statistical characteristics and complexity of HEVC encoder as a leading research of acceleration, optimization and parallelization. Computational complexity of the HEVC encoder is approximately twice the compression performance compared to H.264/AVC. But, the increase of encoder complexity remains a problem to be solved in the future. Before performing the research on acceleration, optimization and parallelization to reduce high complexity of HEVC encoder, we measure the complexity each module for HEVC encoder using it's reference software HM 7.1. We also measured the predicted complexity of fast HEVC encoder software, used in real applications, using HM 7.1 applying fast encoding method. The complexity is measured in terms of the operating cycle of the encoder software under the common test sequences and conditions in the Windows PC environment. In addition, we analyze statistical characteristics of HEVC encoder software according to encoding structures and limitation using coded bitstreams.

Advanced Abdominal MRI Techniques and Problem-Solving Strategies (복부 자기공명영상 고급 기법과 문제 해결 전략)

  • Yoonhee Lee;Sungjin Yoon;So Hyun Park;Marcel Dominik Nickel
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.2
    • /
    • pp.345-362
    • /
    • 2024
  • MRI plays an important role in abdominal imaging because of its ability to detect and characterize focal lesions. However, MRI examinations have several challenges, such as comparatively long scan times and motion management through breath-holding maneuvers. Techniques for reducing scan time with acceptable image quality, such as parallel imaging, compressed sensing, and cutting-edge deep learning techniques, have been developed to enable problem-solving strategies. Additionally, free-breathing techniques for dynamic contrast-enhanced imaging, such as extra-dimensional-volumetric interpolated breath-hold examination, golden-angle radial sparse parallel, and liver acceleration volume acquisition Star, can help patients with severe dyspnea or those under sedation to undergo abdominal MRI. We aimed to present various advanced abdominal MRI techniques for reducing the scan time while maintaining image quality and free-breathing techniques for dynamic imaging and illustrate cases using the techniques mentioned above. A review of these advanced techniques can assist in the appropriate interpretation of sequences.