• 제목/요약/키워드: ac-to-dc resonant converter

검색결과 108건 처리시간 0.023초

고전력밀도 AC/DC 어댑터의 설계 (Design of High Power Density AC/DC Adapter)

  • 이준영
    • 전력전자학회논문지
    • /
    • 제15권4호
    • /
    • pp.259-265
    • /
    • 2010
  • 본 논문에서는 더 높은 에너지 효율을 요구하는 전자 기기들의 사용에 따른 고전력 밀도 AC/DC 어댑터의 구조를 제안한다. PFC (Power Factor Corrector) topology는 BCM (Boundary Conduction Mode)제어 방식을 적용한 Boost topology를 기본으로 하였으며, DC/DC topology는 주파수제어를 적용한 LLC 공진 컨버터를기본으로 하였다. 이는 반도체 소자 및 마그네틱 소자의 크기를 줄이는데 용이하다. 85W급 AC/DC adapter (18.5V/4.6A)를 설계하여 실험한 결과 $90V_{rms}$의 입력전압에서 90%의 효율과 $36W/in^3$의 전력밀도가 측정되었고 무부하시 전력 손실은 0.5W를 달성하였다.

Three-Phase PWM Inverter and Rectifier with Two-Switch Auxiliary Resonant DC Link Snubber-Assisted

  • Nagai Shinichiro;Sato Shinji;Matsumoto Takayuki
    • Journal of Power Electronics
    • /
    • 제5권3호
    • /
    • pp.233-239
    • /
    • 2005
  • In this paper, a new conceptual circuit configuration of a 3-phase voltage source, soft switching AC-DC-AC converter using an IGBT module, which has one ARCPL circuit and one ARDCL circuit, is presented. In actuality, the ARCPL circuit is applied in the 3-phase voltage source rectifier side, and the ARDCL circuit is in the inverter side. And more, each power semiconductor device has a novel clamp snubber circuit, which can save the power semiconductor device from voltage and current across each power device. The proposed soft switching circuits have only two active power semiconductor devices. These ARCPL and ARDCL circuits consist of fewer parts than the conventional soft switching circuit. Furthermore, the proposed 3-phase voltage source soft switching AC-DC-AC power conversion system needs no additional sensor for complete soft switching as compared with the conventional 3-phase voltage source AC-DC-AC power conversion system. In addition to this, these soft switching circuits operate only once in one sampling term. Therefore, the power conversion efficiency of the proposed AC-DC-AC converter system will get higher than a conventional soft switching converter system because of the reduced ARCPL and ARDCL circuit losses. The operation timing and terms for ARDCL and ARCPL circuits are calculated and controlled by the smoothing DC capacitor voltage and the output AC current. Using this control, the loss of the soft switching circuits are reduced owing to reduced resonant inductor current in ARCPL and ARDCL circuits as compared with the conventional controlled soft switching power conversion system. The operating performances of proposed soft switching AC-DC-AC converter treated here are evaluated on the basis of experimental results in a 50kVA setup in this paper. As a result of experiment on the 50kVA system, it was confirmed that the proposed circuit could reduce conduction noise below 10 MHz and improve the conversion efficiency from 88. 5% to 90.5%, when compared with the hard switching circuit.

소프트 스위칭형 PFC 승강압 AC-DC 컨버터에 관한 연구 (A Study on PFC Buck-Boost AC-DC Converter by Soft Switching Method)

  • 곽동걸;이승호;이봉섭;정도영;심재선;임진근
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.435-437
    • /
    • 2007
  • Authors propose a PFC(power factor correction) Buck-Boost AC-DC converter by soft switching method. The proposed converter for a discontinuous conduction mode eliminates the complicated control requirement and reduces the size of components. The input current waveform in the converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of ac input voltage under the constant duty cycle switching.Therefore,the input power factor is nearly unity and the control algorithm is simple. To achieve high efficiency system, the proposed converter is constructed by using a partial resonant technique. The control switches using in the converter are operated with soft switching for a partial resonant. The control switches are operated without increasing their voltage and current stresses by the soft switching method. The result is that the switching loss is very low and the efficiency of converter is high.

  • PDF

고역률의 단일단 부스트 입력방식의 공진형 AC-DC 컨버터 (A Single Stage Boost Input Type Resonant AC-DC Converter with High Power Factor)

  • 연재을;정진범;김희준
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.66-68
    • /
    • 2003
  • This paper proposes the single stage boost input type resonant AC-DC converter. Proposed converter uses the resonance between leakage inductance of the transformer and resonance capacitance. And it obtains high power factor more than 98$\%$ through continuous current mode pulse width modulation. To verify the validity of the proposed converter, operation principle In the steady state is analyzed and experimental results are presented.

  • PDF

3상 3.3kV/220V 6kVA 모듈형 반도체 변압기의 프로토타입 개발 (Prototype Development of 3-Phase 3.3kV/220V 6kVA Modular Semiconductor Transformer)

  • 김재혁;김도현;이병권;한병문;이준영;최남섭
    • 전기학회논문지
    • /
    • 제62권12호
    • /
    • pp.1678-1687
    • /
    • 2013
  • This paper describes a prototype of 3-phase 3.3kV/220V 6kVA modular semiconductor transformer developed in the lab for feasibility study. The developed prototype is composed of three single-phase units coupled in Y-connection. Each single-phase unit with a rating of 1.9kV/127V 2kVA consists of a high-voltage high-frequency resonant AC-DC converter, a low-voltage hybrid-switching DC-DC converter, and a low-voltage hybrid-switching DC-AC converter. Also each single-phase unit has two DSP controllers to control converter operation and to acquire monitoring data. Monitoring system was developed based on LabView by using CAN communication link between the DSP controller and PC. Through various experimental analyses it was verified that the prototype operates with proper performance under normal and sag condition. The system efficiency can be improved by adopting optimal design and replacing the IGBT switch with the SiC MOSFET switch. The developed prototype confirms a possibility to build a commercial high-voltage high-power semiconductor transformer by increasing the number of series-connected converter modules in high-voltage side and improving the performance of switching element.

로스레스 스너버를 사용한 고효율의 대용량 AC-DC 강압형 컨버터 (The High Power AC-DC Buck Converter of High Efficienty Using Loss-Less Snubber)

  • 문상필;서기영;이현우
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.951-954
    • /
    • 1998
  • This paper proposed that a high power AC-DC buck converter topology of high efficiency using loss-less snubber operates with four chopper connecting a number of parallel circuit. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative resutls on computer is included to confirm the validity of the analytical results. The partial resonant circuit makes use of a inductor using step-down and a condenser of loss-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in partial resonant circuit makes charging energy regenerated at input power source of rresonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

차량 충전용 고효율 절연형 컨버터 개발 (The development of high efficiency isolated converter for vehicle charger)

  • 박민준;진호상;이건희;황광규;김우섭;이재호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.101-102
    • /
    • 2015
  • This paper is about the suggestion for the development in the commercialization for 3.6kW Class On-Board charger. It is suggesting non-insulation AC-DC Boost Power Factor correction circuit and insulation DC-DC resonant Converter for circuit design. In addition, Input AC voltage in the power supply is DCM control which can be designed to decrease the inductance for the inductor size to be reduced. DCM controls and Interleaved PFC can be designed to decrease the inductor size increasing the power conversions. Also, using the insulation DC-DC resonant converter, the efficiency can be increased. This system is verified using prototype hardware.

  • PDF

Analysis of an AC/DC Resonant Pulse Power Converter for Energy Harvesting Using a Micro Piezoelectric Device

  • Chung Gyo-Bum;Ngo Khai D.T.
    • Journal of Power Electronics
    • /
    • 제5권4호
    • /
    • pp.247-256
    • /
    • 2005
  • In order to harvest power in an efficient manner from a micro piezoelectric (PZT) device for charging the battery of a remote system, a new AC/DC resonant pulse power converter is proposed. The proposed power converter has two stages in the power conversion process. The first stage includes N-type MOSFET full bridge rectifier. The second stage includes a boost converter having an N-type MOSFET and a P-type MOSFET. MOSFETs work in the $1^{st}$ or $3^{rd}$ quadrant region. A small inductor for the boost converter is assigned in order to make the size of the power converter as small as possible, which makes the on-interval of the MOSFET switch of the boost converter ultimately short. Due to this short on-interval, the parasitic junction capacitances of MOSFETs affect the performance of the power converter system. In this paper, the performance of the new converter is analytically and experimentally evaluated with consideration of the parasitic capacitance of switching devices.

부분공진형 고역률 승강압 AC-DC 컨버터 (A New partial resonant buck-boost AC-DC converter for high power factor)

  • 신현식;서기영;권순걸;곽동걸;이현우;우정인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.512-515
    • /
    • 1994
  • This paper propose the high power factor and efficiency buck-boost AC-DC converter because the input current is made sinusoidal wave in single phase alternating current source. The proposed converter is able to minimize switching loss by the partial resonant switching which is for switching devices to operate the zero voltage switching (ZVS) or zero current switching(ZCS) without increasing their voltage and current stresses.

  • PDF

3상 승압형 AC/DC 컨버터의 고역율과 스위칭 손실 저감을 위한 공진 PWM 스위칭 기법에 관한 연구 (Study on Resonant PWM Switching Technique for $3{\phi}$ Boost AC/DC Converter with High Power Factor and Less Switching Loss)

  • 이은규;노영남;김병진;전희종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.541-543
    • /
    • 1997
  • In this paper, a proposed resonant PWM switching technique makes the boost AC/DC converter to high input power factor and less switching loss. Also, the switching control scheme is used which minimize harmonic components employing novel PWM technique. In addition, an employment of resonant circuit for switching makes zero current switching(ZCS) and zero voltage switching(ZVS) for control switches without switching losses. The result shows that high power factor is still for varying load and switching loss is very low.

  • PDF