• 제목/요약/키워드: ac-impedance spectroscopy

검색결과 104건 처리시간 0.022초

고체산화물 연료전지의 Samarium Oxide 혼합 공기극에 대한 열특성 분석 (Thermal Characteristics of Samarium-based Composite Cathode ($Sm_{0.5}Sr_{0.5}CoO_{3-\delta}/ Sm_{0.2}Ce_{0.8}O_{1.9}$) for Intermediate Temperature-operating Solid Oxide Fuel Cell)

  • 백승욱;배중면
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2021-2025
    • /
    • 2007
  • Performance of single cell at solid oxide fuel cell (SOFC) system is largely affected by electrocatalytic and thermal properties of cathode. Samarium-based perovskite oxide material is recently recognized as promising cathode material for intermediate temperature-operating SOFC due to its high electrocatalytic property. Perovskite structured $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ and its composite material, $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}/Sm_{0.2}Ce_{0.8}O_{1.9}$ were investigated in terms of area specific resistance (ASR), thermal expansion coefficient (TEC), thermal cycling and long term performance. $Sm_{0.2}Ce_{0.8}O_{1.9}$ was used as electrolyte material. Electrochemical ac impedance spectroscopy (EIS) and dilatometer were used to measure the cathodic properties. Composite cathode ($Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$: $Sm_{0.2}Ce_{0.8}O_{1.9}$ = 6:4) showed a good ASR of 0.13${\Omega}$ $cm^2$ at 650$^{\circ}C$ and its TEC value was 12.3${\times}$10-6/K at 600$^{\circ}C$ which is similar to the value of ceria-based electrolyte of 11.9${\times}$10-6/K. Performance of composite cathode was maintained with no degradation even after 13 times thermal cycle test.

  • PDF

그래핀에 담지된 Fe3O4와 CuO 나노입자의 리튬이차전지 음극성능 (Performance of Nanosized Fe3O4 and CuO Supported on Graphene as Anode Materials for Lithium Ion Batteries)

  • 정재훈;정동원;한상욱;김광현;오은석
    • 전기화학회지
    • /
    • 제14권4호
    • /
    • pp.239-244
    • /
    • 2011
  • 본 연구에서는 에틸렌글리콜을 사용한 polyol reduction 방법으로 나노크기의 $Fe_3O_4$와 CuO가 각각 그래핀에 분산된 $Fe_3O_4$/graphene, CuO/graphene 복합체를 합성하였으며, 이를 리튬이차전지의 음극활물질로 사용한 전극의 성능을 평가하였다. 합성된 복합체의 물리적 특성은 SEM, XRD, TGA 등으로 분석하였으며, 반쪽전지를 제조하여 충/방전, cyclic voltammetry, 교류 임피던스 등의 전기화학적 특성평가를 수행하였다. 그래핀 표면에 분산된 금속산화물 나노입자들에 의한 용량증가 및 전기적 네트워크 향상 등의 효과로 $Fe_3O_4$/graphene 및 CuO/graphene 복합체의 전극성능이 그래핀 전극보다 우수하였다. 복합체의 경우 30회 충/방전 후에도 600 mAh/g 용량을 유지하였다.

Electrical/Optical Characterization of Zn-Sn-O Thin Films Deposited through RF Sputtering

  • Park, Chan-Rok;Yeop, Moon-Su;Lee, Bo-Ram;Kim, Ji-Soo;Hwang, Jin-Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.360-360
    • /
    • 2012
  • Zn-Sn-O (Zinc-Tin-Oxide; ZTO) thin films have been gaining extensive academic and industrial attentions owing to a semiconducting channel materials applicable to large-sized flat-panel displays. Due to the constituent oxides i.e., ZnO and SnO2, the resultant Zn-Sn-O thin films possess artificially controllable bandgaps and transmittances especially effective in the visible regime. The current approach employed RF sputtering in depositing the Zn-Sn-O thin films onto glass substrates at ambient conditions. This work places its main emphases on the electrical/optical features which are closely related to the combinations of processing variables. The electrical characterizations are performed using dc-based current-voltage characteristics and ac-based impedance spectroscopy. The optical constants, i.e., refractive index and extinction coefficient, are calculated through spectroscopic ellipsometry along with the estimation of bandgaps. The charge transport of the deposited ZTO thin films is based on electrons characteristic of n-type conduction. In addition to the basic electrical/optical information, the delicate manipulation of n-type conduction is indispensible in diversifying the industrial applications of the ZTO thin films as active devices in information and energy products. Ultimately, the electrical properties are correlated to the processing variables along with the underlying mechanism which largely determines the electrical and optical properties.

  • PDF

전기화학적 염소 추출법에 의한 시멘트 모르터내의 철근 방식 (Anti-Corrosion Behaviour of Rebar in Cement Mortar by Electrochemical Chloride Extraction)

  • 남상철;임영창;조원일;조병원;전해수;윤경석
    • 전기화학회지
    • /
    • 제3권1호
    • /
    • pp.31-38
    • /
    • 2000
  • 전기화학적 염소 추출법에 의해 염분이 함유된 시멘트 모르터내의 철근의 방식효과를 고찰하였다 초기에 혼입된 염 중 약 $43\%$가 Friedel 염 형태로 시멘트 모르터내에 고정되었으며, 전기화학적 염소추출법에 의해 가용성 염소이온의 추출이 가능하였다. Fick's 2nd law에 의해 시간 및 거리에 따른 농도 profile의 예측이 가능하였으며, 이는 실제값에 근접하였다. 전기화학적 염소추출법 수행 후 부식전위는 양의 방향으로 상승하였으며, 교류 임피던스결과 부식이 억제됨을 알 수 있었다.

도핑되지 않은 다이아몬드 박막의 전기전도 경로와 전도기구 연구 (Studies on the Conducion path and Conduction Mechanism in undeped polycrystalline Diamond Film)

  • 이범주;안병태;이재갑;백영준
    • 한국재료학회지
    • /
    • 제10권9호
    • /
    • pp.593-600
    • /
    • 2000
  • 본 연구에서는 도핑하지 않은 다이아몬드 박막에서의 전류전도 경로를 체계적으로 규명하고 다이아몬드 박막의 전도기구에 대해 조사하였다. 도핑되지 않은 다결정 다이아몬드 박막에서 두께와 측정방향에 따른 교류 임피던스법에 의해 측정된 저향값이 기존의 표면전도 모델과는 일치하지 안니하였다. 다이아몬드 박막에 구리를 전기도금한 결과 구리는 결정립계에만 불연속적으로 도금되었고 다이아몬드 박막 위에 은을 증착한 후 전지에칭을 한 결과 결정립계가 우선 에칭이 되어 전류가 결정립계를 통하여 흐름을 확인하였다. 또, 리본형 다이아몬드 박막의 표면을 절연층으로 형성시킨 후 박막 내부의 결정립계를 통하여 전류가 흘러 전기도금이 되는 것으로부터 다결정 다이아몬드 박막의 주요 전기전도 경로는 결정립계임을 확인하였다. 높은 전기전도도를 보여주는 다이아몬드 박막은 전도 활성화 에너지가 45meV 정도이었고 dangling bond 밀도는 낮았다. 그러나 산소 열처리나 수소플라즈마처리가 Si passivation 이론과는 반대로 dangling bond 밀도를 증가시키면서 전기전도성을 떨어뜨렸다. 이 결과들과 표면의 탄소화학결합을 연결시켜 높은 전도성을 야기시키는 결합은 H-C-C-H 결합임을 추론하였다.

  • PDF

Study on Atmospheric Corrosion for Two Different Marine Environments in India

  • Saha, Jayanta Kumar
    • Corrosion Science and Technology
    • /
    • 제6권3호
    • /
    • pp.120-127
    • /
    • 2007
  • In any developing nation major investment goes for infrastructure and it is not exception in India. Good numbers of buildings, bridges, shopping malls, car parks etc. are coming up with steel for sustainable development. Thus protecting the structures from corrosion are the challenges faced by professionals for all types of steel structures. About 3% of GDP is accounted for loss due to corrosion. To combat this up to date corrosion map is called for as the country has wide variation of climatic zones with vastcoastline. Logically organic paint system can be prescribed based on the corrosion rate on bare steel with respect to environment. Present paper will emphasis on the study conducted on two types of structural steel coated with organic paint located in twomarine environment having been exposed for three years, Test coupons made from steels both bare and coated are deployed at two field stations having marine (Digha) and industrial marine (Channai) environments. Various tests like AC impedance DC corrosion, polarisation, salt spray test, $SO_2$ chamber and Raman spectroscopy were carried out both in laboratory on fresh as well as coupons collected from exposure sites. Rust formed on the bare and scribed coated coupons are investigated. It is found that normal marine environment at Digha exhibits higher corrosion rate than polluted marine environment in Channai. Rust analysis indicates formation of ${\propto}$-FeoOH protects or reduces corrosion rate at Channai and formation of non-protective ${\gamma}$-FeoOH increases corrosion rate at Digha. The slower corrosion rate in Channai than at Digha is attributed due to availability of $SO_2$, in the environment, which converts non‐protective rust ${\gamma}$-FeoOH to protective rust ${\propto}$-FeoOH. While comparing the damage on the coated panels it is found that low alloy structural steel provides less damage than plain carbon steel. From the experimentations a suitable paint system specification is drawn for identical environments for low medium and high durability.

Electrochemical Properties of a Zirconia Membrane with a Lanthanum Manganate-Zirconia Composite Electrode and its Oxygen Permeation Characteristics by Applied Currents

  • Park, Ji Young;Jung, Noh Hyun;Jung, Doh Won;Ahn, Sung-Jin;Park, Hee Jung
    • 한국세라믹학회지
    • /
    • 제56권2호
    • /
    • pp.197-204
    • /
    • 2019
  • An electrochemical oxygen permeating membrane (OPM) is fabricated using Zr0.895Sc0.095Ce0.005Gd0.005O2-δ (ScCeGdZ) as the solid electrolyte and aLa0.7Sr0.3MnO3-bScCeGdZ composite (LZab, electrode) as the electrode. The crystal phase of the electrode and the microstructure of the membrane is investigated with X-ray diffraction and scanning electron microscopy. The electrochemical resistance of the membrane is examined using 2-p ac impedance spectroscopy, and LZ55 shows the lowest electrode resistance among LZ82, LZ55 and LZ37. The oxygen permeation is studied with an oxygen permeation cell with a zirconia oxygen sensor. The oxygen flux of the OPM with LZ55 is nearly consistent with the theoretical value calculated from Faraday's Law below a critical current. However, it becomes saturated above the critical current due to the limit of the oxygen ionic conduction of the OPM. The OPM with LZ55 has a very high oxygen permeation flux of ~ 3.5 × 10-6 mol/㎠s in I = 1.4 A/㎠.

Structural and Electrochemical Characterization of LiFePO4 Synthesized by Hydrothermal Method

  • Jeon, Yeon-Su;Jin, En-Mei;Jin, Bo;Jun, Dae-Kyoo;Han, Zhen-Ji;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권1호
    • /
    • pp.41-45
    • /
    • 2007
  • Phospho-olivine $LiFePO_4$ cathode materials were prepared by hydrothermal reaction. Carbon black was added to enhance the electrical conductivity of $LiFePO_4$. The structural and morphological performance of $LiFePO_4$ and $LiFePO_4$-C powders were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). $LiFePO_4$/Li and $LiFePO_4$-C/Li cells were characterized electrochemically by cyclic voltammogram (CV), charge/discharge experiments and ac impedance spectroscopy. The results showed that the discharge capacity of $LiFePO_4$/Li cell was 147 mAh/g at the first cycle and 118 mAh/g after 30 cycles, respectively. The discharge capacity of $LiFePO_4$-C/Li cell with 5 wt% carbon black was the largest among $LiFePO_4$-C/Li cells, 133 mAh/g at the first cycle and 128 mAh/g after 30 cycles, respectively. It was demonstrated that cycling performance of $LiFePO_4$-C/Li cell with 5 wt% carbon black was better than that of $LiFePO_4$/Li cell.

Corrosion Charateristics of PEO-treated Ti-6Al-4V Alloy in Solution Containing Si and Mg Ions

  • Park, Seon-Yeong;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.153-153
    • /
    • 2017
  • The application of the coating supports the mechanical characteristics of the implant, and various materials and coatings are currently being used in the implant in a way to accelerate adhesion. Especially, plasma electrolytic oxidation (PEO) coating has been proposed continually with good surface treatment of titanium alloys. Also, the PEO process can incorporate Ca and P ions on the titanium surface through variables varied factor. PEO process for bioactive surface has carried out in electrolytes containing Ca and P ions. Natural bone is composed of mineral elements such as Mg, Si, Zn, Sr, and Mn, etc. Especially, Mg and Si of these elements play role in bone formation and growth after clinical implantation of bio-implants. In this study, corrosion charateristics of PEO-treated Ti-6Al-4V alloy in solution containing Si and Mg ions has been investigated using several experimental techniques. The PEO-treated surfaces were identified by X-ray diffraction, using a diffractometer (XRD, Philips X' pert PRO, Netherlands) with Cu $K{\alpha}$ radiation. The morphology was observed by field-emission scanning electron microscopy (FE-SEM, Hitachi 4800, Japan) and energy-dispersive X-ray spectroscopy (EDX, Oxford ISIS 310, England). The potentiodynamic polarization and AC impedance tests for electrochemical degradations were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

Electrochemical characteristics of Ca, P, Sr, and Si Ions from PEO-treated Ti-6Al-4V Alloy Surface

  • Yu, Ji-Min;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.154-154
    • /
    • 2017
  • Ti-6Al-4V alloys are widely used as metal-lic biomaterials in dentistry and orthopedics due to its excellent biocompatibility and me-chanical properties. However, because of low biological activity, it is difficult to form bone growth directly on the surface of titanium implants. For this reason, surface treatment of plasma electrolytic oxidation(PEO) was used for dental implants. To enhance bioac-tivity on the surface, strontium(Sr) and sili-con(Si) ions can be added to PEO treated sur-face in the electrolyte containing these ions. The presence of Sr in the coating enhances osteoblast activity and differentiation, where-as it inhibits osteoclast production and prolif-eration. And Si has been found to be essen-tial for normal bone, cartilage growth, and development. In this study, electrochemical characteristics of Ca, P, Sr, and Si ions from PEO-treated Ti-6Al-4V alloy surface was re-searched using various experimental instruments. DC power is used and Ti-6Al-4V al-loy was subjected to a voltage of 280 V for 3 minutes in the electrolyte containing 5, 10, 20M% Sr ion and 5M% Si ion. The morphol-ogies of PEO-treated Ti-6Al-4V alloy by electrochemical anodization were examined by field-emission scanning electron micro-scopes (FE-SEM), energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) and corrosion analysis using AC impedance and potentiodynamic polarization test in 0.9% NaCl solution at similar body tempera-ture using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF