DOI QR코드

DOI QR Code

Performance of Nanosized Fe3O4 and CuO Supported on Graphene as Anode Materials for Lithium Ion Batteries

그래핀에 담지된 Fe3O4와 CuO 나노입자의 리튬이차전지 음극성능

  • Jeong, Jae-Hun (School of Chemical Engineering & Bioengineering, University of Ulsan) ;
  • Jung, Dong-Won (School of Chemical Engineering & Bioengineering, University of Ulsan) ;
  • Han, Sang-Wook (School of Chemical Engineering & Bioengineering, University of Ulsan) ;
  • Kim, Kwang-Hyun (School of Chemical Engineering & Bioengineering, University of Ulsan) ;
  • Oh, Eun-Suok (School of Chemical Engineering & Bioengineering, University of Ulsan)
  • 정재훈 (울산대학교 생명화학공학부) ;
  • 정동원 (울산대학교 생명화학공학부) ;
  • 한상욱 (울산대학교 생명화학공학부) ;
  • 김광현 (울산대학교 생명화학공학부) ;
  • 오은석 (울산대학교 생명화학공학부)
  • Received : 2011.11.08
  • Accepted : 2011.11.28
  • Published : 2011.11.30

Abstract

In this study, $Fe_3O_4$/graphene and CuO/graphene composites were synthesized by the polyol reduction method using ethylene glycol, and their performances as the anodes of lithium ion batteries were evaluated. The physical characteristics of the synthesized composites were analyzed by SEM, XRD, and TGA. In addition, their electrochemical properties were examined by the electrochemical analysis techniques such as charge/discharge performance, cyclic voltammetry, and AC impedance spectroscopy. The cells composed of $Fe_3O_4$/graphene and CuO/graphene composites showed better performance than the graphene electrode, due to the dispersion of nanosized $Fe_3O_4$ or CuO on the surface of graphene and the formation of good electrical network in the electrode. Their composites kept the reversible capacity more than 600 mAh/g even after the charging/discharging of 30 cycles.

본 연구에서는 에틸렌글리콜을 사용한 polyol reduction 방법으로 나노크기의 $Fe_3O_4$와 CuO가 각각 그래핀에 분산된 $Fe_3O_4$/graphene, CuO/graphene 복합체를 합성하였으며, 이를 리튬이차전지의 음극활물질로 사용한 전극의 성능을 평가하였다. 합성된 복합체의 물리적 특성은 SEM, XRD, TGA 등으로 분석하였으며, 반쪽전지를 제조하여 충/방전, cyclic voltammetry, 교류 임피던스 등의 전기화학적 특성평가를 수행하였다. 그래핀 표면에 분산된 금속산화물 나노입자들에 의한 용량증가 및 전기적 네트워크 향상 등의 효과로 $Fe_3O_4$/graphene 및 CuO/graphene 복합체의 전극성능이 그래핀 전극보다 우수하였다. 복합체의 경우 30회 충/방전 후에도 600 mAh/g 용량을 유지하였다.

Keywords

References

  1. J. H. Jeong, D. W. Jung, B. S. Kong, J. K. Lee, and E. S. Oh, 'Nano-sized Co and Sn-Co alloy/graphite composites for application to lithium ion batteries', J. Ceram. Processing Research, 12, 105 (2011).
  2. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, 'Nano-sized transition-metal oxides as negativeelectrode materials for lithium-ion batteries', Nature, 407, 496 (2000). https://doi.org/10.1038/35035045
  3. H. Wang, L. F. Cui, Y. Yang, H. S. Casalongue, H. T. Robinson, Y. Liang, Y. Cui, and H. Dai, '$Mn_{3}O_{4}$-Graphene Hybrid as a High-Capacity Anode Material for Lithium ion Batteries', J. Am. Chem. Soc., 132, 13978 (2010) https://doi.org/10.1021/ja105296a
  4. G. Wang, T. Liu, X. Xie, Z. Ren, J. Bai, and H. wang, 'Structure and electrochemical performance of $Fe_{3}O_{4}$/ graphene nanocomposite as anode material for lithium-ion batteries', Mater. Chem. Phys., 128, 336 (2011). https://doi.org/10.1016/j.matchemphys.2011.03.049
  5. L. Ji, Z. Tan, T. R. Kuykendall, S. Aloni, S. Xun, E. Lin, V. Battaglia, and Y. Zhang, '$Fe_{3}O_{4}$ nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells', Phys. Chem. Chem. Phys., 13, 7170 (2011). https://doi.org/10.1039/c1cp20455f
  6. J. Z. Wang, C. Zhong, D. Wexler, N. H. Idris, Z. X. Wang, L. Q. Chen, and H. K. Liu, 'Graphene-Encapsulated $Fe_{3}O_{4}$Nanoparticles with 3D Laminated Structure as Superior Anode in Lithium Ion Batteries', Chem. Eur. J., 17, 661 (2011). https://doi.org/10.1002/chem.201001348
  7. L. B. Chen, N. Lu, C. M. Xu, H. C. Yu, and T. H. Wang, 'Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries', Electrochim. Acta, 54, 4198 (2009). https://doi.org/10.1016/j.electacta.2009.02.065
  8. J. Morales, L. Sanchez, F. Martín, J. R. Ramos-Barrado, and M. Sánchez, 'Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells', Thin Solid Films, 474, 133 (2005). https://doi.org/10.1016/j.tsf.2004.08.071
  9. S. Q. Wang, J. Y. Zhang, and C. H. Chen, 'Dandelion-like hollow microspheres of CuO as anode material for lithiumion batteries', Scripta Materialia, 57, 337 (2007). https://doi.org/10.1016/j.scriptamat.2007.04.034
  10. D. Chen, G. Ji. Y. Ma, J. Y. Lee, and J. Lu, 'Graphene- Encapsulated Hollow $Fe_{3}O_{4}$ Nanoparticle Aggregates As a High-Performance Anode Material for Lithium Ion Batteries', ACS Appl. Mater. Interfaces, 3, 3078 (2011). https://doi.org/10.1021/am200592r
  11. X. H. Huang, C. B. Wang, S. Y. Zhang, and F. Zhou, 'CuO/C microspheres as anode materials for lithium ion batteries', Electrichim. Acta, 56, 6752 (2011). https://doi.org/10.1016/j.electacta.2011.05.072
  12. X. Y. Xue, C. H. Ma, C. X. Cui, and L. L. Xing, 'High lithium storage performance of $Fe_{2}O_{3}$/graphene nanocomposites as lithium-ion battery anodes', Solid State Sciences, 13, 1526 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.05.015
  13. B. Wang, X. L. Wu, C. Y. Shu, Y. G. Guo, and C. R. Wang, 'Synthesis of CuO/graphene nanocomposite as a highperformance anode material for lithium-ion batteries', J.Mater. Chem., 20, 10661 (2010). https://doi.org/10.1039/c0jm01941k
  14. J. Yao, X. Shen, B. Wang, H. Liu, and G. Wang, 'In situ chemical synthesis of $SnO_{2}$-graphene nanocomposite as anode materials for lithium-ion batteries', Electrochem. Commun., 11, 1849 (2009). https://doi.org/10.1016/j.elecom.2009.07.035
  15. Y. S. He, D. W. Bai, X. Yang, J. Chen, X. Z. Liao, and Z. F. Ma, 'A $Co(OH)_{2}$_graphene nanosheets composite as a high performance anode material for rechargeable lithium batteries', Electrochem. Commun., 12, 570 (2010). https://doi.org/10.1016/j.elecom.2010.02.002
  16. P. Lian, X. Zhu, H. Xiang, Z. Li, W. Yang, and H. Wang, 'Enhanced cycling performance of $Fe_{3}O_{4}$-graphene nanocomposite as an anode material for lithium-ion batteries', Electrochim. Acta, 56, 834 (2010). https://doi.org/10.1016/j.electacta.2010.09.086
  17. J. Zhou, L. Ma, H Song, B. Wu, and X. Chen, 'Durable high-rate performance of CuO hollow nanoparticles/ graphene-nanosheet composite anode material for lithiumion batteries', Electrochem. Commun., doi:10.1016/j.elecom. 2011.08.011.
  18. G. Zhou, D. W. Wang, F. Li, L. Zhang, N. Li, Z. S. Wu, L. Wen, G. Q. Lu, and H. M. Cheng, 'Graphene-Wrapped $Fe_{3}O_{4}$ Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries', Chem. Mater., 22, 5306 (2010). https://doi.org/10.1021/cm101532x
  19. X. Zhu, Y. Zhu, S. Murali, M. D. Stoller, and R. S. Ruoff, 'Nanostructured Reduced Graphene Oxide/$Fe_{2}O_{3}$ Composite As a High-Performance Anode Material for Lithium Ion Batteries', ACS Nano, 5, 3333 (2011). https://doi.org/10.1021/nn200493r
  20. Y. J. Mai, X. L. Wang, J. Y. Xiang, Y. Q. Qiao, D. Zhang, C. D. Gu, and J. P. Tu, 'CuO/graphene composite as anode materials for lithium-ion batteries', Electrochim. Acta, 56, 2306 (2011). https://doi.org/10.1016/j.electacta.2010.11.036
  21. C. Ban, Z. Wu, D. T. Gillaspie, L. Chen, Y. Yan, J. L. Blackburn, and A. C. Dillon, 'Nanostructured $Fe_{3}O_{4}$/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode', Adv. Mater., 22, E145 (2010). https://doi.org/10.1002/adma.200904285
  22. P. L. Taberna, S. Mitra, P. Poizot, P. Simon, and J. M. Tarascon, 'High rate capabilities $Fe_{3}O_{4}$-based Cu nanoarchitecture electrodes lithium-ion battery application' Nat. Mater., 5, 567 (2006). https://doi.org/10.1038/nmat1672

Cited by

  1. Characteristics of Fe2O3/exfoliated vapor-grown carbon fiber composite as anode material for lithium-ion batteries vol.45, pp.9, 2015, https://doi.org/10.1007/s10800-015-0866-4
  2. Effects of VGCF pretreatment on the characteristics of Fe2O3/VGCF composites as anode materials for Li-ion batteries vol.42, pp.12, 2012, https://doi.org/10.1007/s10800-012-0482-5